Skip to main content

Advertisement

Log in

Gender effects on brain changes in early-onset psychosis

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Progressive loss of cortical gray matter (GM) and increase of cerebrospinal fluid (CSF) have been reported in early-onset psychosis (EOP). EOP typically begins during adolescence, a time when developmental brain trajectories differ by gender. This study aimed to determine gender differences in progression of brain changes in this population. A sample of 61 (21 females) adolescents with a first psychotic episode and a matched sample of 70 (23 females) controls underwent both baseline and 2-year follow-up anatomical brain imaging assessments. Regional GM and CSF volumes were obtained using automated methods based on the Talairach’s proportional grid system. At baseline, only male patients showed a clear pattern of alterations in the frontal lobe relative to controls (smaller GM and larger CSF volumes). However, parallel longitudinal changes for male and female patients relative to controls were observed, resulting in a common pattern of brain changes across both genders: rate of left frontal lobe GM volume loss was larger in male (−3.8 %) and female patients (−4.2 %) than in controls (−0.7 % males; −0.4 % females). The reverse was found for the CSF volume in the left frontal lobe. While the GM and CSF volumes of females with EOP appear to be within the normal range at initial illness onset, our results point to a similar trajectory of increased/accelerated brain changes in both male and female patients with EOP. The pattern of progression of brain changes in psychosis appears to be independent of gender or structural alterations on appearance of psychotic symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aleman A, Kahn RS, Selten JP (2003) Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 60(6):565–571

    Article  PubMed  Google Scholar 

  2. Hafner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28(Suppl 2):17–54

    Article  PubMed  Google Scholar 

  3. McGrath JJ (2007) The surprisingly rich contours of schizophrenia epidemiology. Arch Gen Psychiatry 64(1):14–16

    Article  PubMed  Google Scholar 

  4. Keshavan MS et al (2008) Schizophrenia, “just the facts”: what we know in 2008. Part 3: neurobiology. Schizophr Res 106(2–3):89–107

    Article  PubMed  Google Scholar 

  5. Leung A, Chue P (2000) Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 401:3–38

    Article  CAS  PubMed  Google Scholar 

  6. Huber TJ et al (2005) Sex hormones in psychotic men. Psychoneuroendocrinology 30(1):111–114

    Article  CAS  PubMed  Google Scholar 

  7. Gogos A, Kwek P, van den Buuse M (2012) The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology 219(1):213–224

    Article  CAS  PubMed  Google Scholar 

  8. Bora E et al (2011) The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 42(2):295–307

  9. Nopoulos P et al (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res-Neuroimaging 98(1):1–13

    Article  CAS  Google Scholar 

  10. Lenroot RK et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36(4):1065–1073

    Article  PubMed Central  PubMed  Google Scholar 

  11. Blakemore SJ (2012) Imaging brain development: the adolescent brain. Neuroimage 61(2):397–406

    Article  PubMed  Google Scholar 

  12. Raznahan A et al (2011) How does your cortex grow? J Neurosci 31(19):7174–7177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Goldstein JM et al (2002) Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 59(2):154–164

    Article  PubMed  Google Scholar 

  15. Thompson PM et al (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98(20):11650–11655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rapoport JL et al (1999) Progressive cortical change during adolescence in childhood-onset schizophrenia—a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 56(7):649–654

    Article  CAS  PubMed  Google Scholar 

  17. Sporn AL et al (2003) Progressive brain volume loss during adolescence in childhood-onset schizophrenia. Am J Psychiatry 160(12):2181–2189

    Article  PubMed  Google Scholar 

  18. Vidal CN et al (2006) Dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch Gen Psychiatry 63(1):25–34

    Article  PubMed  Google Scholar 

  19. Keller A et al (2003) Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry 160(1):128–133

    Article  PubMed  Google Scholar 

  20. Frazier JA et al (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34(1):37–46

    Article  PubMed Central  PubMed  Google Scholar 

  21. James ACD et al (2002) Evidence for non-progressive changes in adolescent-onset schizophrenia—follow-up magnetic resonance imaging study. Br J Psychiatry 180:339–344

    Article  CAS  PubMed  Google Scholar 

  22. James AC et al (2004) Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 161(6):1023–1029

    Article  PubMed  Google Scholar 

  23. Weisinger B et al (2013) Lack of gender influence on cortical and subcortical gray matter development in childhood-onset schizophrenia. Schizophr Bull 39(1):52–58

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hafner H et al (1995) When and how does schizophrenia produce social deficits. Eur Arch Psychiatry Clin Neurosci 246(1):17–28

    Article  CAS  PubMed  Google Scholar 

  25. Huber G (1997) The heterogeneous course of schizophrenia. Schizophr Res 28:177–185

    Article  CAS  PubMed  Google Scholar 

  26. Gogtay N et al (2011) Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 37(3):504–513

    Article  PubMed Central  PubMed  Google Scholar 

  27. Reig S et al (2009) Progression of brain volume changes in adolescent-onset psychosis. Schizophr Bull 35(1):233–243

    Article  PubMed Central  PubMed  Google Scholar 

  28. Reig S et al (2010) Multicenter study of brain volume abnormalities in children and adolescent-onset psychosis. Schizophr Bull 37(6):1270–1280

  29. Arango C et al (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69(1):16–26

    Article  PubMed  Google Scholar 

  30. Lenroot RK, Giedd JN (2010) Sex differences in the adolescent brain. Brain Cogn 72(1):46–55

    Article  PubMed Central  PubMed  Google Scholar 

  31. Castro-Fornieles J et al (2007) The child and adolescent first-episode psychosis study (CAFEPS): design and baseline results. Schizophr Res 91(1–3):226–237

    Article  PubMed  Google Scholar 

  32. Soutullo C (2007) Traducción al Español de la Entrevista Diagnóstica: Kiddie-Schedule for affective disorders and schizophrenia, present and lifetime version (K-SADS-PL, 1996). http://www.cun.es/la-clinica/departamentos-yservicios-medicos/psiquiatria-y-psicologia-medica/mas-sobreel-departamento/unidades/psiquiatria-infantil-y-adolescente, 1999

  33. Geller B et al (2001) Reliability of the Washington University in St. Louis Kiddie schedule for affective disorders and schizophrenia (WASH-U-KSADS) mania and rapid cycling sections. J Am Acad Child Adolesc Psychiatry 40(4):450–455

    Article  CAS  PubMed  Google Scholar 

  34. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276

    Article  CAS  PubMed  Google Scholar 

  35. Peralta V, Cuesta MJ (1994) Validation of positive and negative symptom scale (PANSS) in a sample of Spanish schizophrenia patients. Actas Luso Españolas de Neurología Psiquiatría y Ciencias Afines 22:171–177

    Google Scholar 

  36. Shaffer D et al (1983) A children’s global assessment scale (CGAS). Arch Gen Psychiatry 40:1228–1231

    Article  CAS  PubMed  Google Scholar 

  37. Fraguas D et al (2014) Duration of untreated psychosis predicts functional and clinical outcome in children and adolescents with first episode psychosis: a 2-year longitudinal study. Schizophr Res 152(1):130–138

  38. Rey MJ et al (1989) Guidelines for the dosage of neuroleptics. I: chlorpromazine equivalents of orally-administered neuroleptics. Int Clin Psychopharmacol 4(2):95–104

    Article  CAS  PubMed  Google Scholar 

  39. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64(6):663–667

    Article  CAS  PubMed  Google Scholar 

  40. Reig S et al (2009) Assessment of the increase in variability when combining volumetric data from different scanners. Hum Brain Mapp 30(2):355–368

    Article  PubMed  Google Scholar 

  41. Andreasen NC et al (1996) Automatic atlas-based volume estimation of human brain regions from MR images. J Comput Assist Tomogr 20(1):98–106

    Article  CAS  PubMed  Google Scholar 

  42. Kates WR et al (1999) Automated Talairach atlas-based parcellation and measurement of cerebral lobes in children. Psychiatry Res-Neuroimaging 91(1):11–30

    Article  CAS  Google Scholar 

  43. Desco M et al (2001) Multimodality image quantification using Talairach grid. In: Sonka M, Hason KM (eds) In: Proceedings from the international society for optical engineering, 18–22 February 2001, San Diego CA

  44. Ashburner J, Friston KJ (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6:209–217

    Article  CAS  PubMed  Google Scholar 

  45. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York

    Google Scholar 

  46. Huber TJ et al (2001) Estradiol levels in psychotic disorders. Psychoneuroendocrinology 26(1):27–35

    Article  CAS  PubMed  Google Scholar 

  47. Kulkarni J et al (2008) Estrogen in severe mental illness: a potential new treatment approach. Arch Gen Psychiatry 65(8):955–960

    Article  PubMed  Google Scholar 

  48. Viveros MP et al (2012) A comparative, developmental, and clinical perspective of neurobehavioral sexual dimorphisms. Front Neurosci 6:84

    Article  PubMed Central  PubMed  Google Scholar 

  49. Nopoulos P, Flaum M, Andreasen N (1997) Sex differences in brain morphology in schizophrenia. Am J Psychiatry 154:1648–1654

    Article  CAS  PubMed  Google Scholar 

  50. Molina V et al (2005) Association between excessive frontal cerebrospinal fluid and illness duration in males but not in females with schizophrenia. Eur Psychiatry 20:332–338

    Article  PubMed  Google Scholar 

  51. Beltz AM, Berenbaum SA (2013) Cognitive effects of variations in pubertal timing: is puberty a period of brain organization for human sex-typed cognition? Horm Behav 63(5):823–828

    Article  PubMed  Google Scholar 

  52. Field EF et al (2004) Neonatal and pubertal, but not adult, ovarian steroids are necessary for the development of female-typical patterns of dodging to protect a food item. Behav Neurosci 118(6):1293–1304

    Article  CAS  PubMed  Google Scholar 

  53. Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 55(5):597–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ismail N, Garas P, Blaustein JD (2011) Long-term effects of pubertal stressors on female sexual receptivity and estrogen receptor-alpha expression in CD-1 female mice. Horm Behav 59(4):565–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Cropley V, Wood SJ, Pantelis C (2013) Brain structural, neurochemical and neuroinflammatory markers of psychosis onset and relapse: is there evidence for a psychosis relapse signature? Int Clin Psychopharmacol [Epub ahead of print]

  56. Fraguas D et al (2012) Decreased glutathione levels predict loss of brain volume in children and adolescents with first-episode psychosis in a two-year longitudinal study. Schizophr Res 137(1–3):58–65

    Article  PubMed  Google Scholar 

  57. Cahn W et al (2009) Psychosis and brain volume changes during the first five years of schizophrenia. Eur Neuropsychopharmacol 19(2):147–151

    Article  CAS  PubMed  Google Scholar 

  58. Sun D et al (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14(10):976–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Pantelis C et al (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31(3):672–696

    Article  PubMed  Google Scholar 

  60. McGlashan T (2006) Is active psychosis neurotoxic? Schizophr Bull 32:609–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Weinberger DR (2002) Biological phenotypes and genetic research on schizophrenia. World Psychiatry 1(1):2–6

    PubMed Central  PubMed  Google Scholar 

  62. Andreasen NC et al (2013) Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 170(6):609–615

    Article  PubMed  Google Scholar 

  63. Sowell ER et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  CAS  PubMed  Google Scholar 

  64. Jernigan TL et al (1991) Maturation of human cerebrum observed in vivo during adolescence. Brain 114(5):2037–2049

    Article  PubMed  Google Scholar 

  65. Zipursky RB, Reilly TJ, Murray RM (2012) The myth of schizophrenia as a progressive brain disease. Schizophr Bull 39(6):1363–1372

  66. Cannon TD, Mednick SA, Parnas J (1989) Genetic and perinatal determinants of structural brain deficits in schizophrenia. Arch Gen Psychiatry 46:883–889

    Article  CAS  PubMed  Google Scholar 

  67. Keshavan MS, Anderson S, Pettegrew JW (1994) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28:239–265

    Article  CAS  PubMed  Google Scholar 

  68. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  69. Lenroot RK et al (2009) Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum Brain Mapp 30(1):163–174

    Article  PubMed  Google Scholar 

  70. Kulkarni J, Hayes E, Gavrilidis E (2012) Hormones and schizophrenia. Curr Opin Psychiatry 25(2):89–95

    Article  PubMed  Google Scholar 

  71. Gur RE et al (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57(8):761–768

    Article  CAS  PubMed  Google Scholar 

  72. Velakoulis D et al (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63(2):139–149

    Article  PubMed  Google Scholar 

  73. Pantelis C, Velakoulis D, McGorry PD et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  74. Cropley VL, Pantelis C (2014) Using longitudinal imaging to map the ‘relapse signature’ of schizophrenia and other psychoses. Epidemiol Psychiatr Sci 23(3):219–225

    Article  CAS  PubMed  Google Scholar 

  75. Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67(5):728–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Hollingshead AB, Redlich FC (1954) Schizophrenia and social structure. Am J Psychiatry 110(9):695–701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jose de Arriba of the Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Madrid, Spain for data management. In memoriam: Santiago Reig, Ph.D. (1958–2011). We thank Dr. Reig for his statistical guidance, mentorship and outstanding contributions, not only to the development of this study but also to the field of neuroimaging studies in early-onset psychosis.

Conflict of interest

This work was supported by the Spanish Ministry of Economy and Competitiveness. Instituto de Salud Carlos III, CIBERSAM, RETICS RD06/0011 (REM-TAP Network), Fundación Alicia Koplowitz, Fundación Mutua Madrileña, by Grants PI02/1248, PI05/0678, PI09/01442, PI12/1303, G03/032, Regional Government (S2010/BMD-2422 AGES) and by the European Union Structural Funds (Madrid, Spain). This work was partially supported by Spain’s Ministry of Science and Innovation through CDTI’s CENIT Program (AMIT Project). Dr. Rapado-Castro has received a Health Research Sara Borrell Fellowship from the Spanish Ministry of Economy and Competitiveness, an Alicia Koplowitz Grant for Short-Term Placements from the Alicia Koplowitz Foundation and an IiSGM Fellowship Award for Short-term Placements from the Health Research Institute from the Hospital Gregorio Marañón (IiSGM) (Madrid, Spain). Dr. Rapado-Castro has also received grant support from the Fundación Alicia Koplowitz. Dr. Bartholomeusz has received a National Health and Medical Research Council (NHMRC) Australian-based Clinical Research Fellowship and a John and Betty Lynch Fellowship from the Department of Psychiatry, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne. Dr. González-Pinto is employed by the University of the Basque Country and has been a consultant for the Ministry of Science of Spain and the Basque Government. Dr. González-Pinto also gives conferences, acts as consultant to or receives grants from Lilly, Janssen, MSD, Lundbek, AstraZeneca, Almirall, Sanofi Aventis, BMS, Novartis and Pfizer. Dr. Baeza has received support from Otsuka for attending a conference. Dr. Moreno has served as a consultant to AstraZeneca, Otsuka, Bristol-Myers Squibb and Janssen. Dr. Moreno has also received grant support from the Fundación Alicia Koplowitz, Instituto de Salud Carlos III and European Union Structural Funds. Professor Pantelis has received a NHMRC Australian-based Senior Principal Research Fellowship (ID: 628386), NARSAD Distinguished Investigator Award (US; Grant ID: 18722), and NHMRC Program Grant (ID: 566529); he has received grant support from Janssen-Cilag, Eli Lilly, Hospira (Mayne), Astra Zeneca and has provided consultancy to Janssen-Cilag, Eli Lilly, Hospira (Mayne), Astra Zeneca, Pfizer, Schering Plough, Lundbeck. He has undertaken investigator initiated studies supported by Eli Lilly, Hospira, Janssen Cilag and Astra Zeneca. Dr. Arango. has been a consultant to or has received honoraria or grants from Abbot, AMGEN, AstraZeneca, Bristol-Myers Squibb, Caja Navarra, CIBERSAM, Fundación Alicia Koplowitz, Instituto de Salud Carlos III, Janssen Cilag, Lundbeck, Merck, Ministerio de Ciencia e Innovación, Ministerio de Sanidad, Ministerio de Economía y Competitividad, Mutua Madrileña, Otsuka, Pfizer, Roche, Servier, Shire, Takeda and Schering Plough. The rest of the authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Rapado-Castro.

Additional information

Partial results of this work were presented as a poster at the 2nd Biennial Schizophrenia International Research Conference, April 12, 2010 in Florence, Italy. The abstract was published in Schizophrenia Research, doi:10.1016/j.schres.2010.02.605. This work was presented as poster at the 3rd Schizophrenia International Research Society Conference “Schizophrenia: The Globalization of research”. Florence, Italy. The abstract was published in Schizophrenia Research, 136 (Supplement 1) pp. 372–373. ISSN 0920-9964.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapado-Castro, M., Bartholomeusz, C.F., Castro-Fornieles, J. et al. Gender effects on brain changes in early-onset psychosis. Eur Child Adolesc Psychiatry 24, 1193–1205 (2015). https://doi.org/10.1007/s00787-014-0669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-014-0669-x

Keywords

Navigation