Skip to main content

Advertisement

Log in

DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

DNA methylation plays a critical role in the regulation of the transcription of the suppressors of cytokine signaling (SOCS) 1 and SOCS3, which are modulators in the inflammation. We hypothesized that the methylation status of SOCS1, SOCS3, and long interspersed nuclear element (LINE)-1 in gingival tissues previously inflamed would be similar to that found in gingival tissues without clinical inflammation in the period studied.

Materials and methods

Laser capture microdissection was performed to isolate epithelial and connective gingival tissues. The groups were comprised by ten patients without history of periodontitis and absence of clinical signs of inflammation in the gingiva during the study (healthy group) and ten patients with history of periodontitis, presenting inflammation in the gingival tissue at the first examination of the study (controlled chronic periodontitis group). The gingival biopsies from the controlled chronic periodontitis group were collected after controlling the inflammation. DNA methylation patterns were analyzed using methylation-specific high-resolution melting and combined bisulfite restriction analysis.

Results

DNA methylation levels for SOCS1 and SOCS3 did not differ between groups or tissues; likewise, no differences were observed in total LINE-1 methylation or at specific loci.

Conclusion

At 3 months following control of inflammation in gingival tissues, the methylation profile of SOCS1, SOCS3, and LINE-1 is similar between connective and epithelial tissues from patients that were previously affected or not by chronic inflammation.

Clinical relevance

Clinical results of a successful treatment are observed after inflammation control and the molecular findings illustrate local and general methylation patterns in recovering tissues toward health conditions and might help to understand events that are occurring in oral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Flemmig TF (1999) Periodontitis. Ann Periodontol 4:32–38

    Article  PubMed  Google Scholar 

  2. Babon JJ, Nicola NA (2012) The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors 30:207–219. doi:10.3109/08977194.2012.687375

    Article  PubMed Central  PubMed  Google Scholar 

  3. Egan PJ, Lawlor KE, Alexander WS, Wicks IP (2003) Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest 111:915–924. doi:10.1172/JCI200316156

    Article  PubMed Central  PubMed  Google Scholar 

  4. de Hooge AS, van de Loo FA, Koenders MI, Bennink MB, Arntz OJ, Kolbe T, van den Berg WB (2004) Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis Rheum 50:2014–2023. doi:10.1002/art.20302

    Article  PubMed  Google Scholar 

  5. Yamana J, Yamamura M, Okamoto A, Aita T, Iwahashi M, Sunahori K, Makino H (2004) Resistance to IL-10 inhibition of interferon gamma production and expression of suppressor of cytokine signaling 1 in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 6:R567–R577. doi:10.1186/ar1445

    Article  PubMed Central  PubMed  Google Scholar 

  6. Qin H, Wilson CA, Lee SJ, Benveniste EM (2006) IFN-beta-induced SOCS-1 negatively regulates CD40 gene expression in macrophages and microglia. FASEB J 20:985–987. doi:10.1096/fj.05-5493fje

    Article  PubMed  Google Scholar 

  7. Wong PK, Egan PJ, Croker BA et al (2006) SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. J Clin Invest 116:1571–1581. doi:10.1172/JCI25660

    Article  PubMed Central  PubMed  Google Scholar 

  8. Alsaleh G, Messer L, Semaan N et al (2007) BAFF synthesis by rheumatoid synoviocytes is positively controlled by alpha5beta1 integrin stimulation and is negatively regulated by tumor necrosis factor alpha and Toll-like receptor ligands. Arthritis Rheum 56:3202–3214. doi:10.1002/art.22915

    Article  PubMed  Google Scholar 

  9. Isomäki P, Alanärä T, Isohanni P et al (2007) The expression of SOCS is altered in rheumatoid arthritis. Rheumatology 46:1538–1546. doi:10.1093/rheumatology/kem198

    Article  PubMed  Google Scholar 

  10. Veenbergen S, Bennink MB, Affandi AJ et al (2011) A pivotal role for antigen-presenting cells overexpressing SOCS3 in controlling invariant NKT cell responses during collagen-induced arthritis. Ann Rheum Dis 70:2167–2175. doi:10.1136/ard.2011.154815

    Article  PubMed  Google Scholar 

  11. Lee A, Qiao Y, Grigoriev G et al (2013) Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 65:928–938. doi:10.1002/art.37853

    Article  PubMed Central  PubMed  Google Scholar 

  12. Larsson L, Castilho RM, Giannobile WV (2014) Epigenetics and its role in periodontal diseases—a state-of-the-art review. J Periodontol 21:1–18. doi:10.1902/jop.2014.140559

  13. Saito H, Morita Y, Fujimoto M, Narazaki M, Naka T, Kishimoto T (2000) IFN regulatory factor-1-mediated transcriptional activation of mouse STAT-induced STAT inhibitor-1 gene promoter by IFN-gamma. J Immunol 164:5833–5843. doi:10.4049/jimmunol.164.11.5833

    Article  PubMed  Google Scholar 

  14. Davey GM, Heath WR, Starr R (2006) SOCS1: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens 67:1–9. doi:10.1111/j.1399-0039.2005.00532.x

    Article  PubMed  Google Scholar 

  15. Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90:9–17. doi:10.1177/0022034510378683

    Article  PubMed Central  PubMed  Google Scholar 

  16. Laird PW (2010) Principles and challenges of genome wide DNA methylation analysis. Nat Rev Genet 11:191–203. doi:10.1038/nrg2732

    Article  PubMed  Google Scholar 

  17. Kitkumthorn N, Mutirangura A (2011) Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical application. Clin Epigenet 2:315–330. doi:10.1007/s13148-011-0032-8

    Article  Google Scholar 

  18. Newman M, Blyth BJ, Hussey DJ, Jardine D, Sykes PJ, Ormsby RJ (2012) Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics 7:92–105. doi:10.4161/epi.7.1.18815

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ainamo J, Bay I (1975) Problems and proposals for recording gingivitis and plaque. Int Dent J 25:229–235

    PubMed  Google Scholar 

  20. Mühlemann HR, Son S (1971) Gingival sulcus bleeding—a leading symptom in initial gingivitis. Helv Odontol Acta 15:107–113

    PubMed  Google Scholar 

  21. Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4:1–6

    Article  PubMed  Google Scholar 

  22. Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3:1903–1908. doi:10.1038/nprot.2008.191

    Article  PubMed  Google Scholar 

  23. Kitkumthorn N, Tuangsintanakul Time, Rattanatanyong P, Tiwawech D, Mutirangura A (2012) LINE-1 methylation in the peripheral blood mononuclear cells of cancer patients. Clin Chim Acta 413:869–874. doi:10.1016/j.cca.2012.01.024

    Article  PubMed  Google Scholar 

  24. Carow B, Rottenberg ME (2014) Front Immunol 5:58. doi:10.3389/fimmu.2014.00058

    Article  PubMed Central  PubMed  Google Scholar 

  25. Babon JJ, Varghese LN, Nicola NA (2014) Inhibition of IL-6 family cytokines by SOCS3. Semin Immunol 26:13–19. doi:10.1016/j.smim.2013.12.004

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lofrumento DD, Nicolardi G, Cianciulli A et al (2014) Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun 20:249–260. doi:10.1177/1753425913488429

    Article  PubMed  Google Scholar 

  27. Collins AS, Ahmed S, Napoletano S et al (2014) Hepatitis C virus (HCV)-induced suppressor of cytokine signaling (SOCS) 3 regulates proinflammatory TNF-α responses. J Leukoc Biol. doi:10.1189/jlb.2A1211-608RRRR

    PubMed  Google Scholar 

  28. Fukushima A, Kajiya H, Izumi T, Shigeyama C, Okabe K, Anan H (2014) Pro-inflammatory cytokines induce suppressor of cytokine signaling-3 in human periodontal ligament cells. J Endod 36:1004–1008. doi:10.1016/j.joen.2010.02.027

    Article  Google Scholar 

  29. de Souza JA, Nogueira AV, de Souza PP, Cirelli JA, Garlet GP, Rossa C Jr (2011) Expression of suppressor of cytokine signaling 1 and 3 in ligature-induced periodontitis in rats. Arch Oral Biol 56:1120–1128. doi:10.1016/j.archoralbio.2011.03.022

    Article  PubMed  Google Scholar 

  30. Garlet GP, Cardoso CR, Campanelli AP, Martins W Jr, Silva JS (2006) Expression of suppressors of cytokine signaling in diseased periodontal tissues: a stop signal for disease progression? J Periodontal Res 41:580–584. doi:10.1111/j.1600-0765.2006.00908.x

    Article  PubMed  Google Scholar 

  31. Viana MB, Cardoso FP, Diniz MG et al (2011) Methylation pattern of IFN-γ and IL-10 genes in periodontal tissues. Immunobiology 216:936–941. doi:10.1016/j.imbio.2011.01.006

    Article  PubMed  Google Scholar 

  32. Stefani FA, Viana MB, Dupim AC et al (2013) Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues. Immunobiology 218:1012–1017. doi:10.1016/j.imbio.2012.12.001

    Article  PubMed  Google Scholar 

  33. Zhang S, Barros SP, Moretti AJ et al (2013) Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol 84:1606–1616. doi:10.1902/jop.2013.120294

    PubMed Central  PubMed  Google Scholar 

  34. Baptista NB, Portinho D, Casarin RC et al (2014) DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol 59:670–678. doi:10.1016/j.archoralbio.2014.03.015

    Article  PubMed  Google Scholar 

  35. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38. doi:10.1093/nar/gnh032

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lange NE, Sordillo J, Tarantini L et al (2012) Alu and LINE-1 methylation and lung function in the normative ageing study. BMJ Open 2: doi:10.1136/bmjopen-2012-001231

  37. Chalitchagorn K, Shuangshoti S, Hourpai N et al (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23:8841–8846. doi:10.1038/sj.onc.1208137

    Article  PubMed  Google Scholar 

  38. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321. doi:10.1139/o05-036

    Article  PubMed  Google Scholar 

  39. Gravina S, Vijg J (2010) Epigenetic factors in aging and longevity. Pflugers Arch 459:247–258. doi:10.1007/s00424-009-0730-7

    Article  PubMed  Google Scholar 

  40. Patchsung M, Boonla C, Amnattrakul P, Dissayabutra T, Mutirangura A, Tosukhowong P (2012) Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One 7:e37009. doi:10.1371/journal.pone.0037009

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the São Paulo State Research Foundation (FAPESP2010/08180-0). Andia was supported by FAPESP – 2010/02338-0; Planello was supported by FAPESP-2010/05151-9.

Conflict of interest

The authors have no commercial relationships to declare and report no conflicts of interest related to this study. Authors declare do not have a financial relationship with the research foundation that sponsored the research. In addition, they have control of all primary data and they agree to allow the journal to review their data, if requested.

Ethical standard

This study was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2000, and it was independently reviewed and approved by the Ethics Committee for Research of the State University of Campinas (Protocol number 032/2010). Each participant gave their informed consent prior to their inclusion in the study and after explanations were provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise C. Andia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andia, D.C., Planello, A.C., Portinho, D. et al. DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue. Clin Oral Invest 19, 2337–2344 (2015). https://doi.org/10.1007/s00784-015-1460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1460-1

Keywords

Navigation