Skip to main content

Advertisement

Log in

Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim was to test the properties of experimental calcium silicate/calcium phosphate biphasic cements with hydraulic properties designed for vital pulp therapy as direct pulp cap and pulpotomy.

Methods

CaSi-αTCP and CaSi-DCDP were tested for ion-releasing ability, solubility, water sorption, porosity, ability to nucleate calcium phosphates, and odontoblastic differentiation—alkaline phosphatase (ALP) and osteocalcin (OCN) upregulation—of primary human dental pulp cells (HDPCs).

Results

The materials showed high Ca and OH release, high open pore volume and apparent porosity, and a pronounced ability to nucleate calcium phosphates on their surface. HDPCs treated with CaSi-αTCP showed a strong upregulation of ALP and OCN genes, namely a tenfold increase for OCN and a threefold increase for ALP compared to the control cells. Conversely, CaSi-DCDP induced a pronounced OCN gene upregulation but had no effect on ALP gene regulation.

Conclusions

Both cements showed high biointeractivity (release of Ca and OH ions) correlated with their marked ability to nucleate calcium phosphates. CaSi-αTCP cement proved to be a potent inducer of ALP and OCN genes as characteristic markers of mineralization processes normally poorly expressed by HDPCs.

Clinical relevance

Calcium silicate/calcium phosphate cements appear to be attractive new materials for vital pulp therapy as they may provide odontogenic/dentinogenic chemical signals for pulp regeneration and healing, and dentin formation in regenerative endodontics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C (2014) Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater, in press; doi: 10.5301/jabfm.5000201.

  2. Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod 36:400–413

    Article  PubMed  Google Scholar 

  3. Okiji T, Yoshiba K (2009) Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J Dent 2009:1–12

    Article  Google Scholar 

  4. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C (2010) ESEM-EDX and Raman techniques to study MTA calcium-silicate cements in wet conditions and in real-time. J Endod 36:851–857

    Article  PubMed  Google Scholar 

  5. Gandolfi MG, Taddei P, Modena E, Siboni F, Prati C (2013) Biointeractivity-related vs chemi/physisorption-related apatite precursor-forming ability of current root end filling materials. J Biomed Mater Res B Appl Biomater 101:1107–1123

    Article  PubMed  Google Scholar 

  6. Gandolfi MG, Prati C (2010) MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term sealing ability study. Int Endod J 43:889–901

    Article  PubMed  Google Scholar 

  7. Gandolfi MG, Iacono F, Agee K, Siboni F, Tay F, Pashley DH, Prati C (2009) Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e39–e45

    Article  PubMed  Google Scholar 

  8. Gandolfi MG (2012) A new method for evaluating the pulpward diffusion of Ca and OH ions through coronal dentin into the pulp. Iranian Endod J 7:189–197

    Google Scholar 

  9. D’Antò V, Di Caprio MP, Ametrano G, Simeone M, Rengo S, Spagnuolo G (2010) Effect of mineral trioxide aggregate on mesenchymal stem cells. J Endod 36:1839–1843

    Article  PubMed  Google Scholar 

  10. Gandolfi MG, Shah SN, Feng R, Prati C, Akintoye SO (2011) Biomimetic calcium-silicate cements support differentiation of human orofacial mesenchymal stem cells. J Endod 37:1102–1108

    Article  PubMed Central  PubMed  Google Scholar 

  11. Moghadame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nor JE (2005) Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 31:387–391

    Article  Google Scholar 

  12. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, Ito K (2006) Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39:415–422

    Article  PubMed  Google Scholar 

  13. Paranjpe A, Smoot T, Zhang H, Johnson JD (2011) Direct contact with Mineral Trioxide Aggregate activates and differentiates human dental pulp cells. J Endod 37:1691–1695

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chen CC, Shie MY, Ding SJ (2011) Human dental pulp cell responses to new calcium silicate-based endodontic materials. Int Endod J 44:836–842

    Article  PubMed  Google Scholar 

  15. Liu CH, Hung C Jr, Huang TH, Lin CC, Kao CT, Shie MY (2014) Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. Mater Sci Eng C 43:359–366

    Article  Google Scholar 

  16. Gandolfi MG, Taddei P, Tinti A, Dorigo De Stefano E, Prati C (2011) Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater Sci Eng C 31:1412–1422

    Article  Google Scholar 

  17. Taddei P, Tinti A, Gandolfi MG, Rossi PL, Prati C (2009) Ageing of calcium silicate cements for endodontic use in simulated body fluids: a micro-Raman study. J Raman Spectrosc 40:1858–1866

    Article  Google Scholar 

  18. Yubao L, Xingdong Z, de Groat K (1997) Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials 18:737–741

    Article  Google Scholar 

  19. TenHuisen KS, Brown PW (1998) Formation of calcium-deficient hydroxyapatite from a-tricalcium phosphate. Biomaterials 19:2209–2217

    Article  PubMed  Google Scholar 

  20. Fernandez E, Ginebra MP, Boltong MG, Driessens FCM, Ginebra J, De Maeyer EAP, Verbeeck RMH, Planell JA (1996) Kinetic study of the setting reaction of a calcium phosphate bone cement. J Biomed Mater Res 32:367–374

    Article  PubMed  Google Scholar 

  21. Driessens FCM, Wolke JGC, Jansen JA (2012) A new theoretical approach to calcium phosphates, aqueous solutions and bone remodeling. J Austr Ceram Soc 48:144–149

    Google Scholar 

  22. Ginebra MP, Fernandez E, Driessens FCM, Planell JA (1999) Modeling of the hydrolysis of α-tricalcium phosphate. J Amer Ceram Soc 82:2808–2812

    Article  Google Scholar 

  23. Ishikawa K (2008) Calcium phosphate cement. In Bioceramics and Their Clinical Application; Kokubo T. Ed.; CRC Press: New York, NY, USA; pp. 438-463.

  24. Driessens FC, Planell JA, Boltong MG, Khairoun I, Ginebra MP (1998) Osteotransductive bone cements. Proc Inst Mech Eng H: J Eng Med 212:427–435

    Article  Google Scholar 

  25. Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C (2011) Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behaviour. Dent Mater 27:e134–e157

    Article  PubMed  Google Scholar 

  26. Spagnuolo G, D’Antò V, Valletta R, Strisciuglio C, Schmalz G, Schweikl H, Rengo S (2008) Effect of 2-hydroxyethyl methacrylate on human pulp cell survival pathways ERK and AKT. J Endod 34:684–688

    Article  PubMed  Google Scholar 

  27. Lee DH, Kim NR, Ahn SJ, Yang HC (2006) Effect of passage number on human dental pulp cell proliferation and differentiation. Biomater Res 10:74–77

    Google Scholar 

  28. Borra RC, Lotufo MA, Gagioti SM, Barros Fde M, Andrade PM (2009) A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz Oral Res 23:255–262

    Article  PubMed  Google Scholar 

  29. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:727–780

    Article  Google Scholar 

  30. Chow LC (2010) Next generation calcium phosphate-based biomaterials. Dent Mater J 28:1–10

    Article  Google Scholar 

  31. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM (1999) Calcium phosphate bone cements for clinical applications. Part I: solution chemistry. J Mater Sci: Mater Med 10:169–176

    Google Scholar 

  32. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, Kim EC (2010) Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod 36:1537–1542

    Article  PubMed  Google Scholar 

  33. Eyckmans J, Roberts SJ, Bolander J, Schrooten J (2013) Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors. Biomaterials 34:4612–4621

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hakki SS, Bozkurt BS, Gandolfi MG, Prati C, Belli S (2013) The response of cementoblasts to calcium phosphate resin-based and calcium silicate-based commercial sealers. Int Endod J 46:242–252

    Article  PubMed  Google Scholar 

  35. Schröder U (1985) Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 64:541–548

    PubMed  Google Scholar 

  36. Scarano A, Manzon L, Di Giorgio R, Orsini G, Tripoli D, Piatelli A (2003) Direct capping with four different materials in humans: histological analysis of odontoblast activity. J Endod 29:729–734

    Article  PubMed  Google Scholar 

  37. Lopez-Cazaux S, Bluteau G, Magne D, Lieubeau B, Guicheux J, Alliot-Licht B (2006) Culture medium modulates the behaviour of human dental pulp-derived cells: technical note. Europ Cell Mater 17:35–42

    Google Scholar 

  38. Mizuno M, Banzai Y (2008) Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int Endod J 41:933–938

    Article  PubMed  Google Scholar 

  39. Schmalz G (2009) Calcium hydroxide cements. In: Schmalz G, Arenholt-Bindslev D (eds) Biocompatibility of dental materials, vol Chapter 6.5. Springer, Verlag Berlin, pp 166–176

    Google Scholar 

  40. Pitt Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP (1996) Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127:1491–1494

    Article  Google Scholar 

  41. Mente J, Geletneky B, Ohle M, Koch MJ, Ding PGF, Wolff D, Dreyhaupt J, Martin N, Staehle HJ, Pfefferle T (2010) Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J Endod 36:806–813

    Article  PubMed  Google Scholar 

  42. Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H (2003) The effect of extracellular calcium ion on gene expression of bone-related proteins inhuman pulp cells. J Endod 29:104–107

    Article  PubMed  Google Scholar 

  43. Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  PubMed  Google Scholar 

  44. Okabe T, Sakamoto M, Takeuchi H, Matsushima K (2006) Effects of pH on mineralization ability of human dental pulp cells. J Endod 32:198–201

    Article  PubMed  Google Scholar 

  45. Takagi S, Chow LC, Ishikawa K (1998) Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19:1593–1599

    Article  PubMed  Google Scholar 

  46. Chow LC, Eanes ED (2001) Solubility of calcium phosphates. In: Chow LC, Eanes ED (eds) Octacalcium phosphate. Monogr Oral Sci. Karger, Basel, pp 94–111

    Chapter  Google Scholar 

  47. Gandolfi MG, Taddei P, Tinti A, Prati C (2010) Apatite-forming ability of ProRoot MTA. Int Endod J 43:917–929

    Article  PubMed  Google Scholar 

  48. Collepardi MM (1995) Water reducers/retarders, chapter 6 in Concrete admixtures handbook. Properties, science and technology. Ed. Ramachandran VS, pp 286-409

  49. Ma W, Brown PW (1994) Effect of phosphate additions on the hydration of Portland cement. Adv Cem Res 6:1–12

    Article  Google Scholar 

  50. Hakki SS, Bozkurt SB, Hakki EE, Belli S (2009) Effects of Mineral Trioxide Aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod 35:513–519

    Article  PubMed  Google Scholar 

  51. Sun J, Wei L, Liu X, Li J, Li B, Wang G, Meng F (2009) Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 5:1284–1293

    Article  PubMed  Google Scholar 

  52. Jung GY, Park YJ, Han JS (2010) Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci Mat Med 21:1649–1654

    Article  Google Scholar 

  53. Nakamura S, Matsumoto T, Sasaki J, Egusa H, Lee KY, Nakano T, Sohmura T, Nakahira A (2010) Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A 16:2467–2473

    Article  PubMed  Google Scholar 

  54. Matsumoto S, Hayashi M, Suzuki Y, Suzuki N, Maeno M, Ogiso B (2013) Calcium ions released from mineral trioxide aggregate convert the differentiation pathway of C2C12 Cells into osteoblast lineage. J Endod 39:68–75

    Article  PubMed  Google Scholar 

  55. Shie MY, Ding SJ, Chang HC (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7:2604–2614

    Article  PubMed  Google Scholar 

  56. Shie MY, Chang HC, Ding SJ (2012) Effects of altering the Si/Ca molar ratio of a calcium silicate cement on in vitro cell attachment. Int Endod J 45:337–345

    Article  PubMed  Google Scholar 

  57. Accorinte MLR, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E, Souza V, Loguercio Dourado A (2008) Evaluation of Mineral Trioxide Aggregate and Calcium Hydroxide cement as pulp-capping agents in human teeth. J Endod 34:1–6

    Article  Google Scholar 

  58. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, Lan WH, Hsieh CC (1996) Comparison of calcium phosphate cement mixture and pure calcium hydroxide as derect pulp-capping. J Formos Med Assoc 95:545–550

    PubMed  Google Scholar 

  59. Yoshimine Y, Maeda K (1995) Histologic evaluation of tetracalcium phosphate-based cement as a direct pulp-capping agent. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 79:351–358

    Article  PubMed  Google Scholar 

  60. Chohayeb AA, Adrian JC, Salamat K (1991) Pulpal response to tricalcium phosphate as a capping agent. Oral Surg, Oral Med, Oral Pathol Endod 71:343–345

    Article  Google Scholar 

  61. Lee JB, Park SJ, Kim HH, Kwon YS, Lee KW, Min KS (2014) Physical properties and biological/odontogenicy effects of and experimentally developed fast-setting alpha-tricalcium phosphate-based pulp capping material. BMC Oral Health 14:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  62. Boone ME, Kafrawy AH (1979) Pulp reaction to a tricalcium phosphate ceramic capping agent. Oral Surg Oral Med Oral Pathol Endod 47:369–371

    Article  Google Scholar 

  63. Estrela C, Bammann LL, Estrela CR, Silva RS, Pécora JD (2000) Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz Dent J 11:3–9

    PubMed  Google Scholar 

  64. McHugh CP, Zhang P, Michalek S, Eleazer PD (2004) pH required to kill Enterococcus faecalis in vitro. J Endod 30:218–219

    Article  PubMed  Google Scholar 

  65. Al-Hezaimi K, Al-Hamdan K, Naghshbandi J, Oglesby S, Simon JHS, Rotstein I (2005) Effect of white-colored Mineral Trioxide Aggregate in different concentrations on Candida albicans in vitro. J Endod 31:684–686

    Article  PubMed  Google Scholar 

  66. Siqueira JF Jr, Lopes HP (1999) Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. Int Endod J 32:361–369

    Article  PubMed  Google Scholar 

  67. Ding S-J, Shie M-Y, Wang C-Y (2009) Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. J Mater Chem 19:1183–1190

    Article  Google Scholar 

  68. An S, Gao Y, Ling J, Wei X, Xiao Y (2012) Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci: Mater Med 23:789–795

    Google Scholar 

  69. Wu BC, Huang SC, Ding SJ (2013) Comparative osteogenesis of radiopaque dicalcium silicate cement and white-colored mineral trioxide aggregate in a rabbit femur model. Materials 6:5675–5689

    Article  Google Scholar 

  70. Min KS, Kim HI, Park HJ, Pi SH, Hong CU, Kim EC (2007) Human pulp cells response to Portland cement in vitro. J Endod 33:163–166

    Article  PubMed  Google Scholar 

  71. Shen Q, Sun J, Wu J, Liu C, Chen F (2010) An in vitro investigation of the mechanical-chemical and biological properties of calcium phosphate/calcium silicate/bismutite cement for dental pulp capping. J Biomed Mater Res B Appl Biomater 94:141–148

    PubMed  Google Scholar 

  72. Eleniste PP, Huang S, Wayakanon K, Largura HW, Bruzzaniti A (2014) Osteoblast differentiation and migration are regulated by dynamin GTPase activity. Int J Biochem Cell Biol 46:9–18

    Article  PubMed Central  PubMed  Google Scholar 

  73. Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA (2014) Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 29:892–901

    Article  PubMed Central  PubMed  Google Scholar 

  74. Min KS, Lee S-I, Lee Y, Kim E-C (2009) Effect of radiopaque Portland cement on mineralization in human dental pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e82–e86

    Article  PubMed  Google Scholar 

  75. Schmalz G, Smith AJ (2014) Pulp development, repair, and regeneration: challenges of the transition from the traditional dentistry to biologically based therapies. J Endod 40:S2–S5

    Article  PubMed  Google Scholar 

  76. Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40:S46–S51

    Article  PubMed  Google Scholar 

  77. Simon SRJ, Tomson PL, Berdal A (2014) Regenerative endodontics: regeneration or repair? J Endod 40:S70–S75

    Article  PubMed  Google Scholar 

  78. Prati C, Gandolfi MG (2015) Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater 31:351–370

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Gandolfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandolfi, M.G., Spagnuolo, G., Siboni, F. et al. Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: chemical-physical properties and human pulp cells response. Clin Oral Invest 19, 2075–2089 (2015). https://doi.org/10.1007/s00784-015-1443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1443-2

Keywords

Navigation