Skip to main content

Advertisement

Log in

Zoledronic acid at subtoxic dose extends osteoblastic stage span of primary human osteoblasts

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aimed to check the effect of zoledronic acid (ZA) at subtoxic dose on human osteoblasts (HOs) in terms of cell viability, apoptosis occurrence, and differentiation induction. ZA belongs to the family of bisphosphonates (BPs), largely used in the clinical practice for the treatment of bone diseases, often associated with jaw osteonecrosis onset. Their pharmacological action consists in the direct block of the osteoclast-mediated bone resorption along with indirect action on osteoblasts.

Materials and methods

HOs were treated choosing the highest limit concentration (10−5 M) which does not induce toxic effects. Live/dead staining, flow cytometry, mitochondrial membrane potential assay, osteocalcin western blotting, gp38 RT-PCR, collagen type I, PGE2, and IL-6 ELISA assays were performed.

Results

Similar viability level between control and ZA-treated samples is found along with no significant increase of apoptotic and necrotic cells in ZA-treated sample. To establish if an early apoptotic pathway was triggered, Bax expression and mitochondrial membrane potential were evaluated finding a higher protein expression in control sample and a good integrity of mitochondrial membrane in both experimental points. Type I collagen secretion and alkaline phosphatase (ALP) activity appear increased in ZA-treated sample, osteocalcin expression level is reduced in ZA-treated cells, whereas no modifications of gp38 mRNA level are evidenced. No statistical differences are identified in PGE2 secretion level whereas IL-6 secretion is lower in ZA-treated HOs with respect to control ones.

Conclusions

These results highlight that ZA, delaying the osteoblastic differentiation process versus the osteocytic lineage, strengthens its pharmacological activity enhancing bone density.

Clinical relevance

The knowledge of ZA effects on osteoblasts at subtoxic dose allows to improve therapeutic protocols in order to strengthen drug pharmacological activity through a combined action on both osteoclastic and osteoblastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333:1437–1443

    Article  PubMed  Google Scholar 

  2. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:65–76

    Article  Google Scholar 

  3. Rauch F, Travers R, Plotkin H, Glorieux FH (2002) The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfect. J Clin Invest 110:1293–1299

    Article  PubMed Central  PubMed  Google Scholar 

  4. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Zheng M (2004) Zoledronic Acid Prostate Cancer Study Group. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96:879–882

    Article  PubMed  Google Scholar 

  5. Santini D, Vincenzi B, Hannon RA, Brown JE, Dicuonzo G, Angeletti S, La Cesa A, Coleman RE, Tonini G, Budillon A, Caraglia M, Holen I (2006) Changes in bone resorption and vascular endothelial growth factor after a single zoledronic acid infusion in cancer patients with bone metastases from solid tumours. Oncol Rep 15:1351–1357

    PubMed  Google Scholar 

  6. Green LR (2002) Bisphosphonates in cancer therapy. Curr Opin Oncol 14:609–615

    Article  PubMed  Google Scholar 

  7. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  Google Scholar 

  8. Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4(1):30–34

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mashiba T, Hirano T, Turner CH, Forwood MH, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  Google Scholar 

  10. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    PubMed  Google Scholar 

  11. Bagan JV, Jimenez Y, Murillo J, Hernandez S, Poveda R, Sanchis JM, Diaz JM, Scully C (2006) Jaw osteonecrosis associated with bisphosphonates: multiple exposed areas and its relationship to teeth extractions. Study of 20 cases. Oral Oncol 42:327–329

    Article  PubMed  Google Scholar 

  12. Rizos EC, Milionis HJ, Elisaf MS (2006) Fever with rash following zoledronic acid administration. Clin Exp Rheumatol 24:455

    PubMed  Google Scholar 

  13. Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41:318–320

    Article  PubMed  Google Scholar 

  14. Vitté C, Fleisch H, Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137(6):2324–2333

    PubMed  Google Scholar 

  15. Viereck V, Emons G, Lauck V, Blaschke S, Gründker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  PubMed  Google Scholar 

  16. Lee YJ, Jeong JK, Seol JW, Xue M, Jackson C, Park SY (2013) Activated protein C differentially regulates both viability and differentiation of osteoblasts mediated by bisphosphonates. Exp Mol Med 45:e9

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tsuchimoto M, Azuma Y, Higuchi SI, Hirata N, Kiyoki M, Yamamoto I (1994) Alendronate modulates osteogenesis of human osteoblastic cells in vitro. Jpn J Pharmacol 66:25–33

    Article  PubMed  Google Scholar 

  18. Abe Y, Kawakami A, Nakashima T, Ejima E, Fujiyama K, Kiriyama T, Ide A, Sera N, Usa T, Tominaga T, Ashizawa K, Yokoyama N, Eguchi K (2000) Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells. J Lab Clin Med 136:344–354

    Article  PubMed  Google Scholar 

  19. Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, Evdokiou A, Lynch K, Atkins GJ, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 34:112–123

    Article  PubMed  Google Scholar 

  20. Xiong Y, Yang HJ, Feng J, Shi ZL, Wu LD (2009) Effects of alendronate on the proliferation and osteogenic differentiation of MG-63 cells. J Int Med Res 37:407–416

    Article  PubMed  Google Scholar 

  21. Simon MJ, Niehoff P, Kimmig B, Wiltfang J, Açil Y (2010) Expression profile and synthesis of different collagen types I, II, III, and V of human gingival fibroblasts, osteoblasts, and SaOS-2 cells after bisphosphonate treatment. Clin Oral Investig 14:51–58

    Article  PubMed  Google Scholar 

  22. Naidu A, Dechow PC, Spears R, Wright JM, Kessler HP, Opperman LA (2008) The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:5–13

    Article  PubMed  Google Scholar 

  23. Kim HK, Kim JH, Abbas AA, Yoon TR (2009) Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res 467:3121–3128

    Article  PubMed Central  PubMed  Google Scholar 

  24. Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106:109–118

    Article  PubMed  Google Scholar 

  25. Pozzi S, Vallet S, Mukherjee S, Cirstea D, Vaghela N, Santo L, Rosen E, Ikeda H, Okawa Y, Kiziltepe T, Schoonmaker J, Xie W, Hideshima T, Weller E, Bouxsein ML, Munshi NC, Anderson KC, Raje N (2009) High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 15:5829–5839

    Article  PubMed  Google Scholar 

  26. Bellido T, Plotkin LI (2011) Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone 49:50–55

    Article  PubMed Central  PubMed  Google Scholar 

  27. Igarashi K, Hirafuji M, Adachi H, Shinoda H, Mitani H (1997) Effects of bisphosphonates on alkaline phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblast-like cell line MC3T3-E1. Prostaglandins Leukot Essent Fat Acids 56:121–125

    Article  Google Scholar 

  28. Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676

    PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  Google Scholar 

  30. Schmidt C, Steinbach G, Decking R, Claes LE, Ignatius AA (2003) IL-6 and PGE2 release by human osteoblasts on implant materials. Biomaterials 24:4191–4196

    Article  PubMed  Google Scholar 

  31. Murakami H, Takahashi N, Sasaki T, Udagawa N, Tanaka S, Nakamura I, Zhang D, Barbier A, Suda T (1995) A possible mechanism of the specific action of bisphosphonates on osteoclasts: tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone 17:137–144

    Article  PubMed  Google Scholar 

  32. Sinha RK, Morris F, Shah SA, Tuan RS (1994) Surface composition of orthopaedic implant metals regulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro. Clin Orthop Relat Res 305:258–272

    PubMed  Google Scholar 

  33. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS (2004) Osteoblast proliferation and maturation by bisphosphonates. Biomaterials 25:4105–4115

    Article  PubMed  Google Scholar 

  34. Greiner S, Kadow-Romacker A, Lübberstedt M, Schmidmaier G, Wildemann B (2007) The effect of zoledronic acid incorporated in a poly(D, L-lactide) implant coating on osteoblasts in vitro. J Biomed Mater Res A 80:769–775

    Article  PubMed  Google Scholar 

  35. Chan SL, Yu VC (2004) Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 31:119–128

    Article  PubMed  Google Scholar 

  36. Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM (2006) Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta 1757:1301–1311

    Article  PubMed  Google Scholar 

  37. Zhang W, Pantschenko AG, McCarthy MB, Gronowicz G (2007) Bone-targeted verexpression of Bcl-2 increases osteoblast adhesion and differentiation and inhibits mineralization in vitro. Calcif Tissue Int 80:111–122

    Article  PubMed  Google Scholar 

  38. Lynch MP, Capparelli C, Stein JL, Stein GS, Lian JB (1998) Apoptosis during bone-like tissue development in vitro. J Cell Biochem 68:31–49

    Article  PubMed  Google Scholar 

  39. Marchisio M, Di Carmine M, Pagone R, Piattelli A, Miscia S (2005) Implant surface roughness influences osteoclast proliferation and differentiation. J Biomed Mater Res B Appl Biomater 75:251–256

    Article  PubMed  Google Scholar 

  40. Aubin JE, Turksen K (1996) Monoclonal antibodies as tools for studying the osteoblast lineage. Microsc Res Tech 33:128–140

    Article  PubMed  Google Scholar 

  41. Koch FP, Yekta SS, Merkel C, Ziebart T, Smeets R (2010) The impact of bisphosphonates on the osteoblast proliferation and collagen gene expression in vitro. Head Face Med 6:12

    Article  PubMed Central  PubMed  Google Scholar 

  42. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228:1149–1153

    Article  PubMed  Google Scholar 

  43. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF (2006) E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26:4539–4552

    Article  PubMed Central  PubMed  Google Scholar 

  44. Moreau MF, Guillet C, Massin P, Chevalier S, Gascan H, Baslé MF, Chappard D (2007) Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol 73:718–723

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dott.ssa Piera Sozio for drug purity determinations, Dott.ssa Alessandra di Paolo for the kind gift of Zometa, and MIUR FIRB-Accordi di Programma 2010 Project “Processi degenerativi dei tessuti mineralizzati del cavo orale, impiego di biomateriali e controllo delle interazioni con i microrganismi dell’ambiente” for the fellowships attributed to Dr. V.L Zizzari and Dr. M. De Colli.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susi Zara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zara, S., De Colli, M., di Giacomo, V. et al. Zoledronic acid at subtoxic dose extends osteoblastic stage span of primary human osteoblasts. Clin Oral Invest 19, 601–611 (2015). https://doi.org/10.1007/s00784-014-1280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1280-8

Keywords

Navigation