Skip to main content
Log in

Evaluating pattern matching queries for spatial databases

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

In this paper, we study the spatial pattern matching (SPM) query. Given a set D of spatial objects (e.g., houses and shops), each with a textual description, we aim at finding all combinations of objects from D that match a user-defined spatial patternP. A pattern P is a graph whose vertices represent spatial objects, and edges denote distance relationships between them. The SPM query returns the instances that satisfy P. An example of P can be “a house within 10-min walk from a school, which is at least 2 km away from a hospital.” The SPM query can benefit users such as house buyers, urban planners, and archeologists. We prove that answering such queries is computationally intractable and propose two efficient algorithms for their evaluation. Moreover, we study efficient solutions to address two related problems of the SPM: (1) find top-k matches that are close to a query location and (2) return partial matches for a query pattern. Experiments and case studies on real datasets show that our proposed solutions are highly effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. The user can input the lower/upper bounds of the intervals based on his experience and expertise. Alternatively, the system can be designed to give suggestions, based on, for instance, the previous users’ inputs or query results.

  2. In context without ambiguity, we simply call it a pattern.

  3. To avoid ambiguity, we use “node” to mean “IR-tree node,” and “vertex” to mean “vertex” of the spatial pattern in this paper.

References

  1. Zhang, D., et al.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009)

  2. Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD, pp. 405–418. ACM (2015)

  3. Deng, K., Li, X., Lu, J., Zhou, X.: Best keyword cover search. TKDE 27(1), 61–73 (2015)

    Google Scholar 

  4. Choi, D., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016)

  5. Niemelä, J.: Ecology and urban planning. Biodivers. Conserv. 8(1), 119–131 (1999)

    Article  Google Scholar 

  6. Schnaiberg, J., Riera, J., Turner, M.G., Voss, P.R.: Explaining human settlement patterns in a recreational lake district: Vilas county, Wisconsin, USA. Environ. Manag. 30(1), 24–34 (2002)

    Article  Google Scholar 

  7. Settlement patterns (2017). http://geography.parkfieldprimary.com/the-united-kingdom/settlement-patterns

  8. Ministry of Education of Singapore (2017). https://www.moe.gov.sg/admissions/primary-one-registration/allocation

  9. Papadias, D., et al.: Algorithms for querying by spatial structure. In: VLDB, pp. 546–557 (1998)

  10. Mamoulis, N., Papadias, D.: Multiway spatial joins. TODS 26(4), 424–475 (2001)

    Article  Google Scholar 

  11. Zou, L., Chen, L., Özsu, M.T.: Distance-join: pattern match query in a large graph database. PVLDB 2(1), 886–897 (2009)

    Google Scholar 

  12. Carletti, V., et al.: Challenging the time complexity of exact subgraph isomorphism for huge and dense graphs with VF3. In: TPAMI (2017)

  13. Wu, Y., Patel, J.M., Jagadish, H.: Structural join order selection for XML query optimization. In: ICDE, pp. 443–454. IEEE (2003)

  14. Fang, Y., Cheng, R., Wang, J., Budiman, Cong, G., Mamoulis, N.: SpaceKey: exploring patterns in spatial databases. In: ICDE, pp. 1577–1580. IEEE (2018)

  15. Fang, Y., Cheng, R., Cong, G., Mamoulis, N., Li, Y.: On spatial pattern matching. In: ICDE, pp. 293–304. IEEE (2018)

  16. Li, Y., Fang, Y., Cheng, R., Zhang, W.: Spatial pattern matching: a new direction for finding spatial objects. SIGSPATIAL Spec 11(1), 3–12 (2019)

    Article  Google Scholar 

  17. Fang, Y., Li, Y., Cheng, R., Mamoulis, N., Cong, G.: On spatial pattern matching. http://www.cse.unsw.edu.au/~z3525370/spm2019.pdf

  18. Chen, L., Cong, G., Jensen, C.S., Wu, D.: Spatial keyword query processing: an experimental evaluation. In: PVLDB, pp. 217–228 (2013)

  19. Wu, D., Yiu, M.L., Cong, G., Jensen, C.S.: Joint top-k spatial keyword query processing. TKDE 24(10), 1889–1903 (2012)

    Article  Google Scholar 

  20. Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and optimization of multiway spatial joins using r-trees. In: PODS (1999)

  21. Jin, J., An, N., Sivasubramaniam, A.: Analyzing range queries on spatial data. In: ICDE, pp. 525–534 (2000)

  22. Chen, F., Wu, X.: Perfect pipelining for streaming large file in peer-to-peer networks. In: Theoretical Computer Science, pp. 27–38 (2014)

    Google Scholar 

  23. https://en.wikipedia.org/wiki/Geometric_distribution

  24. https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

  25. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks (2003). arXiv preprint arXiv:cs/0310049

  26. Zhang, S., Yang, J., Jin, W.: Sapper: subgraph indexing and approximate matching in large graphs. PVLDB 3(1–2), 1185–1194 (2010)

    Google Scholar 

  27. Zhu, G., et al.: Treespan: efficiently computing similarity all-matching. In: SIGMOD, pp. 529–540. ACM (2012)

  28. Thomas, L.T., Valluri, S.R., Karlapalem, K.: Margin: maximal frequent subgraph mining. TKDD 4(3), 10 (2010)

    Article  Google Scholar 

  29. Seidman, S.B.: Network structure and minimum degree. Soc Netw 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  30. Fang, Y., Cheng, R., Li, X., Luo, S., Hu, J.: Effective community search over large spatial graphs. PVLDB 10(6), 709–720 (2017)

    Google Scholar 

  31. Fang, Y., Cheng, R., Tang, W., Maniu, S., Yang, X.: Scalable algorithms for nearest-neighbor joins on big trajectory data. TKDE 28(3), 785–800 (2016)

    Google Scholar 

  32. Fang, Y., Wang, Z., Cheng, R., Li, X., Luo, S., Hu, J., Chen, X.: On spatial-aware community search. TKDE 31(4), 783–798 (2019)

    Google Scholar 

  33. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. VLDB 2(1), 337–348 (2009)

    Google Scholar 

  34. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: efficient top-k spatial keyword search. TKDE 28(7), 1706–1721 (2016)

    Google Scholar 

  35. Huang, W., Li, G., Tan, K.-L., Feng, J.: Efficient safe-region construction for moving top-k spatial keyword queries. In: CIKM, pp. 932–941. ACM (2012)

  36. Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: EDBT, pp. 367–378 (2014)

  37. Mahmood, A.R., Aref, W.G., Aly, A.M., Tang, M.: Atlas: on the expression of spatial-keyword group queries using extended relational constructs. In: SIGSPATIAL, p. 45. ACM (2016)

  38. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011)

  39. Liu, J., Deng, K., Sun, H., Ge, Y., Zhou, X., Jensen, C.S.: Clue-based spatio-textual query. PVLDB 10(5), 529–540 (2017)

    Google Scholar 

  40. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of spatial joins using r-trees. In: SIGMOD, pp 237–246 (1993)

  41. Mamoulis, N., Papadias, D.: Integration of spatial join algorithms for processing multiple inputs. SIGMOD 28(2), 1–12 (1999)

    Article  Google Scholar 

  42. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. AAAI FS 6, 45–53 (2006)

    Google Scholar 

  43. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern matching in large attributed graphs. In: KDD, pp. 737–746 (2007)

  44. Tang, M., et al.: Similarity group-by operators for multi-dimensional relational data. TKDE 28(2), 510–523 (2016)

    Google Scholar 

  45. Mongiovi, M., et al.: Sigma: a set-cover-based inexact graph matching algorithm. J. Bioinform. Comput. Biol. 8(02), 199–218 (2010)

    Article  Google Scholar 

  46. Tian, Y., et al.: Tale: a tool for approximate large graph matching. In: ICDE, pp. 963–972. IEEE (2008)

Download references

Acknowledgements

Reynold Cheng was supported by the Research Grants Council of Hong Kong (RGC Projects HKU 17229116, 106150091, and 17205115) and the University of Hong Kong (Projects 104004572, 102009508, and 104004129), and the Innovation and Technology Commission of Hong Kong (ITF project MRP/029/18). Nikos Mamoulis was supported by grant HKU 17253616 from Hong Kong RGC. Gao Cong is supported in part by a MOE Tier-2 grant MOE2016-T2-1-137 and a MOE Tier-1 grant RG31/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiang Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Li, Y., Cheng, R. et al. Evaluating pattern matching queries for spatial databases. The VLDB Journal 28, 649–673 (2019). https://doi.org/10.1007/s00778-019-00550-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-019-00550-3

Keywords

Navigation