Skip to main content
Log in

Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Molybdenum is found in the active site of enzymes usually coordinated by one or two pyranopterin molecules. Here, we mimic an enzyme with a mononuclear molybdenum-bis pyranopterin center by incorporating molybdenum in rubredoxin. In the molybdenum-substituted rubredoxin, the metal ion is coordinated by four sulfurs from conserved cysteine residues of the apo-rubredoxin and two other exogenous ligands, oxygen and thiol, forming a Mo(VI)-(S-Cys)4(O)(X) complex, where X represents –OH or –SR. The rubredoxin molybdenum center is stabilized in a Mo(VI) oxidation state, but can be reduced to Mo(IV) via Mo(V) by dithionite, being a suitable model for the spectroscopic properties of resting and reduced forms of molybdenum-bis pyranopterin-containing enzymes. Preliminary experiments indicate that the molybdenum site built in rubredoxin can promote oxo transfer reactions, as exemplified with the oxidation of arsenite to arsenate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

apo-Rd:

Apo-rubredoxin

β-ME:

β-Mercaptoethanol

BSO:

Biotin sulfoxide

CT:

Charge transfer

CV:

Cyclic voltammetry

DMSOR:

Dimethylsulfoxide reductase

DTT:

Dithiothreitol

DPV:

Differential pulsed voltammetry

Fe-Rd:

Iron-containing rubredoxin

GC:

Glassy carbon

hSO:

Human sulfite oxidase

M:

Metal

Mo-bis PGD:

Molybdenum-bis pyranopterin guanosine dinucleotide-containing enzyme

Mo-Rd:

Molybdenum-substituted rubredoxin

PGE:

Pyrolytic graphite electrode

NHE:

Normal hydrogen electrode

RR:

Resonance Raman

Rd:

Rubredoxin

TCA:

Trichloroacetic acid

TFET:

2,2,2-Trifluoroethanethiol

References

  1. Lu Y, Berry SM, Pfister TD (2001) Chem Rev 101:3047–3080

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Meier KK, Tian S, Zhang J, Guo H, Schulz CE, Robinson H, Nilges MJ, Münck E, Lu Y (2014) J Am Chem Soc 136:12337–12344

    Article  CAS  PubMed  Google Scholar 

  3. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL (2014) Chem Rev 114:3495–3578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Adman ET, Sieker LC, Jensen LH, Bruschi M, Le Gall J (1977) J Mol Biol 112:113–120

    Article  CAS  PubMed  Google Scholar 

  5. Chen CJ, Liu MY, Chen YT, LeGall J (2003) Biochem Biophys Res Commun 308:684–688

    Article  CAS  PubMed  Google Scholar 

  6. Moura I, Bruschi M, LeGall J, Moura JJG, Xavier AV (1977) Biochem Biophys Res Commun 75:1037–1044

    Article  CAS  PubMed  Google Scholar 

  7. Bruschi M, Moura I, Le Gall J, Xavier AV, Sieker LC, Couchoud P (1979) Biochem Biophys Res Commun 90:596–605

    Article  CAS  PubMed  Google Scholar 

  8. Czaja C, Litwiller R, Tomlinson AJ, Naylor S, Tavares P, LeGall J, Moura JJG, Moura I, Rusnak F (1995) J Biol Chem 270:20273–20277

    Article  CAS  PubMed  Google Scholar 

  9. Yu L, Kennedy M, Czaja C, Tavares P, Moura JJ, Moura I (1997) Rusnak FBiochem Biophys Res Commun 231:679–682

    Article  CAS  Google Scholar 

  10. Dauter Z, Wilson KS, Sieker LC, Moulis JM, Meyer J (1996) Proc Natl Acad Sci USA 93:8836–8840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Archer M, Carvalho AL, Teixeira S, Moura I, Moura JJG, Rusnak F, Romao MJ (1999) Protein Sci 8:1536–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ascenso C, Rusnak F, Cabrito I, Lima MJ, Naylor S, Moura I, Moura JJG (2000) J Bio Inorg Chem 5:720–729

    Article  CAS  Google Scholar 

  13. Sun N, Dey A, Xiao Z, Wedd AG, Hodgson KO, Hedman B, Solomon EI (2010) J Am Chem Soc 132:12639–12647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. May SW, Kuo JY (1978) Biochemistry 17:3333–3338

    Article  CAS  PubMed  Google Scholar 

  15. Kowal AT, Zambrano IC, Moura I, Moura JJG, LeGall J, Johnson MK (1988) Inorg Chem 27:1162–1166

    Article  CAS  Google Scholar 

  16. Saint-Martin P, Lespinat PA, Fauque G, Berlier Y, Legall J, Moura I, Teixeira M, Xavier AV, Moura JJG (1988) Proc Natl Acad Sci USA 85:9378–9380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moura I, Teixeira M, LeGall J, Moura JJG (1991) J Inorg Biochem 44:127–139

    Article  CAS  PubMed  Google Scholar 

  18. Henehan CJ, Pountney DL, Zerbe O, Vasak M (1993) Protein Sci 2:1756–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ravi N, Prickril BC, Kurtz DM Jr, Huynh BH (1993) Biochemistry 32:8487–8491

    Article  CAS  PubMed  Google Scholar 

  20. Faller P, Ctortecka B, Tröger W, Butz T, Vasák M (2000) J Biol Inorg Chem 5:393–401

    Article  CAS  PubMed  Google Scholar 

  21. Maher M, Cross M, Wilce MCJ, Guss JM, Wedd AG (2004) Acta Cryst D 60:298–303

    Article  Google Scholar 

  22. Mathies G, Almeida RM, Gast P, Moura JJG, Groenen EJJ (2012) J Phys Chem B 116:7122–7128

    Article  CAS  PubMed  Google Scholar 

  23. Thapper A, Rizzi AC, Brondino CD, Wedd AG, Pais RJ, Maiti BK, Moura I, Pauleta SR, Moura JJG (2013) J Inorg Biochem 127:232–237

    Article  CAS  PubMed  Google Scholar 

  24. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  25. Brondino CD, Romao MJ, Moura I, Moura JJG (2006) Curr Opin Chem Biol 10:109–114

    Article  CAS  PubMed  Google Scholar 

  26. Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rothery RA, Workun GJ, Weiner JH (2008) Biochim Biophys Acta 1778:1897–1929

    Article  CAS  PubMed  Google Scholar 

  28. Grimaldi S, Schoepp-Cothenet B, Ceccaldi P, Guigliarelli B, Magalon A (2013) Biochem Biophys Acta 1827:1048–1085

    CAS  PubMed  Google Scholar 

  29. Rajagopalan KV (1980) Sulfite Oxidase. In: Coughlan MP (ed) Molybdenum and molybdenum containing enzymes, chap 7. Pergamon Press, Oxford, pp 241–272

  30. Pushie MJ, George GN (2011) Coord Chem Rev 255:1055–1084

    Article  CAS  Google Scholar 

  31. Stiefel EL (2002) The biogeochemistry of molybdenum and tungsten. In: Sigel A, Sigel H (eds) Molybdenum and tungsten: their roles in biological processes. Metals ions in biological system, chap 1, vol 39. CRC Press, pp 1–29

  32. Mendel RR (2005) Dalton Trans 3404–3409

  33. Almeida RM, Pauleta SR, Moura I, Moura JJG (2009) J Inorg Biochem 103:1245–1253

    Article  CAS  PubMed  Google Scholar 

  34. Bruschi M, Hatchikian CE, Golovleva LA, LeGall J (1977) J Bacteriol 129:30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lode ET, Coon MJ (1971) J Biol Chem 246:791–802

    CAS  PubMed  Google Scholar 

  36. Spence JT, Chang HYY (1963) Inorg Chem 2:319–323

    Article  CAS  Google Scholar 

  37. Buchanan I, Minelli M, Ashby MT, King TJ, Enemark JH, Garner CD (1984) Inorg Chem 23:495–500

    Article  CAS  Google Scholar 

  38. Bishop PT, Dilworth JR, Hutchinson JP, Zubieta JA (1990) Trans Met Chem 15:177–182

    Article  CAS  Google Scholar 

  39. Huang TJ, Haight GP Jr (1970) J Am Chem Soc 92:2336–2342

    Article  CAS  PubMed  Google Scholar 

  40. Ueyama N, Okamura T, Nakamura A (1992) J Am Chem Soc 114:8129–8137

    Article  CAS  Google Scholar 

  41. Murphy J, Riley JP (1962) Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  42. Tsang S, Phu F, Baum MM, Poskrebyshev GA (2007) Talanta 71:1560–1568

    Article  CAS  PubMed  Google Scholar 

  43. Yang J, Rothery R, Sempombe J, Weiner JH, Kirk ML (2009) J Am Chem Soc 131(43):15612–15614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Liu S, Sun X, Zubieta JA (1988) J Am Chem Soc 110:3324–3326

    Article  CAS  Google Scholar 

  45. Brondino CD, Rivas MG, Romao MJ, Moura JJG, Moura I (2006) Acc Chem Res 29:7887–7896

    Google Scholar 

  46. Klein EL, Astashkin AV, Raitsimring AM, Enemark JH (2013) Coord Chem Rev 257:110–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Izumi Y, Glaser T, Rose K, McMaster J, Basu P, Enemark JH, Hedman B, Hodgson KO, Solomon EI (1999) J Am Chem Soc 121:10035–10046

    Article  CAS  Google Scholar 

  48. Subramanian P, Burgmayer S, Richards S, Szalai V, Spiro TG (1990) Inorg Chem 29:3849–3853

    Article  CAS  Google Scholar 

  49. Johnson MK (2004) Prog Inorg Chem 52:213–266

    Article  Google Scholar 

  50. Ueyama N, Nakata M, Araki T, Nakamura A, Yamashita S, Yamashita T (1981) Inorg Chem 20:1934–1937

    Article  CAS  Google Scholar 

  51. Garrett RM, Rajagopalan KV (1996) J Biol Chem 271:7387–7391

    Article  CAS  PubMed  Google Scholar 

  52. Czernuszewicz RS, LeGall J, Moura I, Spiro TG (1986) Inorg Chem 25:696–700

    Article  CAS  Google Scholar 

  53. Garton SD, Garrett RM, Rajagopalan KV, Johnson MK (1997) J Am Chem Soc 119:2590–2591

    Article  CAS  Google Scholar 

  54. Garton SD, Temple CA, Dhawan IK, Barber MJ, Rajagopalan KV, Johnson MK (2000) J Biol Chem 275:6798–6805

    Article  CAS  PubMed  Google Scholar 

  55. Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Structure 9:125–132

    Article  CAS  PubMed  Google Scholar 

  56. Conrads T, Hemann C, George GN, Pickering IJ, Prince RC, Hille R (2002) J Am Chem Soc 124:11276–11277

    Article  CAS  PubMed  Google Scholar 

  57. Roy R, Adams MW (2002) Met Ions Biol Syst 39:673–697

    CAS  PubMed  Google Scholar 

  58. Caradonna JP, Harlan EW, Holm RH (1986) J Am Chem Soc 108:7856–7858

    Article  CAS  PubMed  Google Scholar 

  59. Tierney DL, Gassner GT, Luchinat C, Bertini I, Ballou DP, Penner-Hahn JE (1999) Biochemistry 38:11051–11061

    Article  CAS  PubMed  Google Scholar 

  60. Bonaccio M, Ghaderi N, Borchardt D, Dunn MF (2005) Biochemistry 44:7656–7668

    Article  CAS  PubMed  Google Scholar 

  61. Bray RC, Adams B, Smith AT, Bennett B, Bailey S (2000) Biochemistry 39:11258–11269

    Article  CAS  PubMed  Google Scholar 

  62. Klein EL, Raitsimring AM, Astashkin AV, Rajapakshe A, Johnson-Winters K, Arnold AR, Potapov A, Goldfarb D, Enemark JH (2012) Inorg Chem 51:1408–1418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Burgrnayer SJN, Stlefel EI (1985) J Chem Edu 62:943–953

    Article  Google Scholar 

  64. Harlan EE, Berg JM, Holm RH (1986) J Am Chem Soc 108:6992–7000

    Article  CAS  Google Scholar 

  65. Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D (2003) Nat Struct Biol 10:928–934

    Article  CAS  PubMed  Google Scholar 

  66. Jepson BJN, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ (2007) J Biol Chem 282:6425–6437

    Article  CAS  PubMed  Google Scholar 

  67. Andersong GL, Williamsll J, Hille R (1992) J Biol Chem 267:23674–23682

    Google Scholar 

  68. Cammack R, Barber MJ, Bray RC (1976) Biochem J 157:469–478

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Moura JJ, Xavier AV, Cammack R, Hall DO, Bruschi M, Le Gall J (1978) Biochem J 173:419–425

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Weber K, Creager SE (1994) Anal Chem 66:3164–3172

    Article  CAS  Google Scholar 

  71. Enemark JH, Garner CD (1997) J Biol Inorg Chem 2:817–822

    Article  CAS  Google Scholar 

  72. Schröder I, Rech S, Krafft T, Macy JM (1997) J Biol Chem 272:23765–23768

    Article  PubMed  Google Scholar 

  73. Watts CA, Ridley H, Dridge EJ, Leaver JT, Reilly AJ, Richardson DJ, Butler CS (2005) Biochem Soc Trans 33:173–175

    Article  CAS  PubMed  Google Scholar 

  74. Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Inorg Chem 44:2964–2972

    Article  CAS  PubMed  Google Scholar 

  75. Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Fundação para a Ciência e Tecnologia (FCT) for the financial support Granted to REQUIMTE (PEst-C/EQB/LA0006/2013) and UCIBIO-REQUIMTE (UID/Multi/04378/2013), BKM (SFRH/BPD/63066/2009) and SRP (FCT-ANR/BBB-MET0023/2012). NMR data were collected on 400-MHz spectrometer that is part of the National NMR Network, also supported by FCT (RECI/BBB-BQB/0230/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. G. Moura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, B.K., Maia, L.B., Silveira, C.M. et al. Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes. J Biol Inorg Chem 20, 821–829 (2015). https://doi.org/10.1007/s00775-015-1268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1268-0

Keywords

Navigation