Skip to main content
Log in

Electronic structure contributions to reactivity in xanthine oxidase family enzymes

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We review the xanthine oxidase (XO) family of pyranopterin molybdenum enzymes with a specific emphasis on electronic structure contributions to reactivity. In addition to xanthine and aldehyde oxidoreductases, which catalyze the two-electron oxidation of aromatic heterocycles and aldehyde substrates, this mini-review highlights recent work on the closely related carbon monoxide dehydrogenase (CODH) that catalyzes the oxidation of CO using a unique Mo–Cu heterobimetallic active site. A primary focus of this mini-review relates to how spectroscopy and computational methods have been used to develop an understanding of critical relationships between geometric structure, electronic structure, and catalytic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AO:

Aldehyde oxidase

CODH:

CO dehydrogenase

DFT:

Density functional theory

ENDOR:

Electron–nuclear double resonance

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

FAD:

Flavin adenine dinucleotide

MCD:

Magnetic circular dichroism

QM/MM:

Quantum mechanics/molecular mechanics

ROS:

Reactive oxygen species

rR:

Resonance Raman

XDH/XO/XOR:

Xanthine dehydrogenase/oxidase/oxidoreductase

References

  1. Hille R, Hall J, Basu P (2014) Chem Rev. doi:10.1021/cr400443z

  2. Hille R (2013) Dalton Trans 42:3029–3042. doi:10.1039/c2dt32376a

    Article  CAS  PubMed  Google Scholar 

  3. Hille R, Nishino T, Bittner F (2011) Coord Chem Rev 255:1179–1205. doi:10.1016/j.ccr.2010.11.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hille R (2005) Arch Biochem Biophys 433:107–116. doi:10.1016/j.abb.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  5. Hille R (1996) Chem Rev 96:2757–2816. doi:10.1021/cr950061t

    Article  CAS  PubMed  Google Scholar 

  6. Kirk ML, Stein B (2013) In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, 2nd edn. Elsevier, Amsterdam, pp 263–293

    Chapter  Google Scholar 

  7. Workun GJ, Moquin K, Rothery RA, Weiner JH (2008) Microbiol Mol Biol Rev 72:228–248. doi:10.1128/MMBR.00041-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran T-D (2010) J Med Chem 53:8441–8460. doi:10.1021/jm100888d

    Article  CAS  PubMed  Google Scholar 

  9. Kitamura S, Sugihara K, Ohta S (2006) Drug Metab Pharmacokinet 21:83–98. doi:10.2133/dmpk.21.83

    Article  CAS  PubMed  Google Scholar 

  10. Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF (2000) Proc Natl Acad Sci USA 97:10723–10728. doi:10.1073/pnas.97.20.10723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li M, Muller TA, Fraser BA, Hausinger RP (2008) Arch Biochem Biophys 470:44–53. doi:10.1016/j.abb.2007.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Montero-Moran GM, Li M, Rendon-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP (2007) Biochemistry 46:5293–5304. doi:10.1021/bi700065h

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wagener N, Pierik AJ, Ibdah A, Hille R, Dobbek H (2009) Proc Natl Acad Sci USA 106:11055–11060. doi:10.1073/pnas.0902210106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Canne C, Stephan I, Finsterbusch J, Lingens F, Kappl R, Fetzner S, Hüttermann J (1997) Biochemistry 36:9780–9790. doi:10.1021/bi970581d

  15. Tshisuaka B, Kappl R, Huettermann J, Lingens F (1993) Biochemistry 32:12928–12934. doi:10.1021/bi00210a047

    Article  CAS  PubMed  Google Scholar 

  16. Gibson J, Dispensa M, Harwood CS (1997) J Bacteriol 179:634–642

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Wilcoxen J, Hille R (2013) J Biol Chem. doi:10.1074/jbc.M113.522441

    PubMed Central  PubMed  Google Scholar 

  18. Dixon M, Thurlow S (1924) Biochem J 18:976–988

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Science 270:1170–1176. doi:10.1126/science.270.5239.1170

    Article  PubMed  Google Scholar 

  20. http://www.pdb.org. Accessed 28 May 2014

  21. Dobbek H (2010) Coord Chem Rev 255:1104–1116. doi:10.1016/j.ccr.2010.11.017

    Article  Google Scholar 

  22. Rebelo JM, Dias JM, Huber R, Moura JJ, Romao MJ (2001) J Biol Inorg Chem 6:791–800. doi:10.1007/s007750100255

    Article  CAS  PubMed  Google Scholar 

  23. Leimkühler S, Stockert AL, Igarashi K, Nishino T, Hille R (2004) J Biol Chem 279:40437–40444. doi:10.1074/jbc.M405778200

    Article  PubMed  Google Scholar 

  24. Fukunari A, Okamoto K, Nishino T, Eger BT, Pai EF, Kamezawa M, Yamada I, Kato N (2004) J Pharmacol Exp Ther 311:519–528. doi:10.1124/jpet.104.070433

    Article  CAS  PubMed  Google Scholar 

  25. Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T (2004) Proc Natl Acad Sci USA 101:7931–7936. doi:10.1073/pnas.0400973101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Okamoto K, Eger BT, Nishino T, Pai EF, Nishino T (2008) Nucleosides Nucleotides Nucl Acids 27:888–893. doi:10.1080/15257770802146577

    Article  CAS  Google Scholar 

  27. Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T (2003) J Biol Chem 278:1848–1855. doi:10.1074/jbc.M208307200

    Article  CAS  PubMed  Google Scholar 

  28. Okamoto K, Kawaguchi Y, Eger BT, Pai EF, Nishino T (2010) J Am Chem Soc 132:17080–17083. doi:10.1021/ja1077574

    Article  CAS  PubMed  Google Scholar 

  29. Pauff JM, Zhang J, Bell CE, Hille R (2008) J Biol Chem 283:4818–4824. doi:10.1074/jbc.M707918200

    Article  CAS  PubMed  Google Scholar 

  30. Cao H, Pauff JM, Hille R (2010) J Biol Chem 285:28044–28053. doi:10.1074/jbc.M110.128561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pauff JM, Hemann CF, Jünemann N, Leimkühler S, Hille R (2007) J Biol Chem 282:12785–12790. doi:10.1074/jbc.M700364200

    Article  CAS  PubMed  Google Scholar 

  32. Metz S, Thiel W (2009) J Am Chem Soc 131:14885–14902. doi:10.1021/ja9045394

    Article  CAS  PubMed  Google Scholar 

  33. Dobbek H, Gremer L, Meyer O, Huber R (1999) Proc Natl Acad Sci USA 96:8884–8889. doi:10.1073/pnas.96.16.8884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci USA 99:15971–15976. doi:10.1073/pnas.212640899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Stein BW, Kirk ML (2014) Chem Commun 50:1104–1106. doi:10.1039/C3CC47705C

    Article  CAS  Google Scholar 

  36. Gourlay C, Nielsen DJ, White JM, Knottenbelt SZ, Kirk ML, Young CG (2006) J Am Chem Soc 128:2164–2165. doi:10.1021/ja056500f

    Article  CAS  PubMed  Google Scholar 

  37. Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Chem Rev 104:419–458. doi:10.1021/cr0206317

    Article  CAS  PubMed  Google Scholar 

  38. Solomon EI (2006) Inorg Chem 45:8012–8025. doi:10.1021/ic060450d

    Article  CAS  PubMed  Google Scholar 

  39. Gutteridge S, Tanner SJ, Bray RC (1978) Biochem J 175:869–878

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Malthouse JP, George GN, Lowe DJ, Bray RC (1981) Biochem J 199:629–637

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Dong C, Yang J, Leimkühler S, Kirk ML (2014) lnorg Chem. 53:7077–7079. doi:10.1021/ic500873y

    Article  CAS  Google Scholar 

  42. McWhirter RB, Hille R (1991) J Biol Chem 266:23724–23731

    CAS  PubMed  Google Scholar 

  43. Wilson GL, Greenwood RJ, Pilbrow JR, Spence JT, Wedd AG (1991) J Am Chem Soc 113:6803–6812. doi:10.1021/ja00018a014

    Article  CAS  Google Scholar 

  44. Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ (1996) Biochemistry 35:1432–1443. doi:10.1021/bi9520500

    Article  CAS  PubMed  Google Scholar 

  45. Manikandan P, Choi EY, Hille R, Hoffman BM (2001) J Am Chem Soc 123:2658–2663. doi:10.1021/ja003894w

    Article  CAS  PubMed  Google Scholar 

  46. Gutteridge S, Bray RC (1980) Biochem J 189:615–623

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Jones RM, Inscore FE, Hille R, Kirk ML (1999) Inorg Chem 38:4963–4970. doi:10.1021/ic990154j

    Article  CAS  PubMed  Google Scholar 

  48. Shanmugam M, Zhang B, McNaughton RL, Kinney RA, Hille R, Hoffman BM (2010) J Am Chem Soc 132:14015–14017. doi:10.1021/ja106432h

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sempombe J, Stein B, Kirk ML (2011) Inorg Chem 50:10919–10928. doi:10.1021/ic201477n

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hemann C, Illich P, Stockert AL, Choi Y, Hille R (2005) J Phys Chem B 109, pp. 3023–3031. doi:10.1021/jp046636k

    Article  CAS  PubMed  Google Scholar 

  51. Shanmugam M, Wilcoxen J, Habel-Rodriguez D, Cutsail I, George E, Kirk ML, Hoffman BM, Hille R (2013) J Am Chem Soc, 131119100231003. doi:10.1021/ja406136f

  52. Zhang B, Hemann CF, Hille R (2010) J Biol Chem 285:12571. doi:10.1074/jbc.M109.076851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bray MR, Deeth RJ (1997) J Chem Soc Dalton Trans, 1267–1268 doi:10.1039/A700601B

  54. Amano T, Ochi N, Sato H, Sakaki S (2007) J Am Chem Soc 129:8131–8138. doi:10.1021/ja068584d

    Article  CAS  PubMed  Google Scholar 

  55. Mondal MS, Mitra S (1994) Biochemistry 33:10305–10312. doi:10.1021/bi00200a010

    Article  CAS  PubMed  Google Scholar 

  56. Schopfer LM, Massey V, Nishino T (1988) J Biol Chem 263:13528–13538

    CAS  PubMed  Google Scholar 

  57. Kim JH, Hille R (1993) J Biol Chem 268:44

    CAS  PubMed  Google Scholar 

  58. Stockert AL, Shinde SS, Anderson RF, Hille R (2002) J Am Chem Soc 124:14554–14555. doi:10.1021/ja027388d

    Article  CAS  PubMed  Google Scholar 

  59. Choi E-Y, Stockert AL, Leimkühler S, Hille R (2004) J Inorg Biochem 98:841–848. doi:10.1016/j.jinorgbio.2003.11.010

    Article  CAS  PubMed  Google Scholar 

  60. Edmondson D, Ballou D, Van Heuvelen A, Palmer G, Massey V (1973) J Biol Chem 248:6135

    CAS  PubMed  Google Scholar 

  61. Olson JS, Ballou DP, Palmer G, Massey V (1974) J Biol Chem 249:4350–4362

    CAS  PubMed  Google Scholar 

  62. Voityuk AA, Albert K, Romão MJ, Robert Huber A, Rösch N (1998) Inorg. Chem. 37:176–180. doi:10.1021/ic9707570

    CAS  Google Scholar 

  63. Zhang X-H, Wu Y-D (2005) Inorg Chem 44:1466–1471. doi:10.1021/ic048730l

    Article  CAS  PubMed  Google Scholar 

  64. D’Ardenne SC, Edmondson DE (1990) Biochemistry 29:9046–9052. doi:10.1021/bi00490a023

    Article  PubMed  Google Scholar 

  65. Metz S, Wang D, Thiel W (2009) J Am Chem Soc 131:4628–4640. doi:10.1021/ja805938w

    Article  CAS  PubMed  Google Scholar 

  66. Dieterich JM, Werner H-J, Mata RA, Metz S, Thiel W (2010) J. Chem. Phys. 132:035101. doi:10.1063/1.3280164

    Article  PubMed  Google Scholar 

  67. Metz S, Thiel W (2010) J Phys Chem B 114:1506–1517. doi:10.1021/jp909999s

    Article  CAS  PubMed  Google Scholar 

  68. Doonan CJ, Rubie ND, Peariso K, Harris HH, Knottenbelt SZ, George GN, Young CG, Kirk ML (2008) J Am Chem Soc 130:55–65. doi:10.1021/ja068512m

    Article  CAS  PubMed  Google Scholar 

  69. Kirk ML, Berhane A (2012) Chem Biodiversity 9:1756–1760. doi:10.1002/cbdv.201200073

    Article  CAS  Google Scholar 

  70. Siegbahn PEM, Shestakov AF (2005) J Comput Chem 26:888–898. doi:10.1002/jcc.20230

    Article  CAS  PubMed  Google Scholar 

  71. Hofmann M, Kassube JK, Graf T (2005) J Biol Inorg Chem 10:490–495. doi:10.1007/s00775-005-0661-5

    Article  CAS  PubMed  Google Scholar 

  72. Rothery RA, Stein B, Solomonson M, Kirk ML, Weiner JH (2012) Proc Natl Acad Sci USA 109:14773–14778. doi:10.1073/pnas.1200671109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ilich P, Hille R (1999) J Phys Chem B 103:5406–5412. doi:10.1021/jp9904825

    Article  CAS  Google Scholar 

  74. Bayse CA (2009) Dalton Trans 2009:2306–2314. doi:10.1039/B821878A

    Article  Google Scholar 

Download references

Acknowledgments

M. L. K. would like to thank all of his graduate students and postdoctoral associates who have contributed to works described in this chapter. M. L. K. also acknowledges the National Institutes of Health (GM-057378) for continued support of the author’s work that is detailed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Kirk.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, B.W., Kirk, M.L. Electronic structure contributions to reactivity in xanthine oxidase family enzymes. J Biol Inorg Chem 20, 183–194 (2015). https://doi.org/10.1007/s00775-014-1212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1212-8

Keywords

Navigation