Skip to main content
Log in

NMR chemical shift study of the interaction of selected peptides with liposomal and micellar models of apoptotic cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The interaction between two peptides previously selected by phage display to target apoptotic cells and phospholipidic models of these cells (liposomes or micelles made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and/or 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS, phosphatidylserine analog) was studied by the simple analysis of the changes induced on the proton NMR chemical shifts of the peptides. Our approach which does not need healthy and/or apoptotic cells for assessing the affinity of different peptides is fast and efficient and requires small amounts of peptide to determine the association constant, the interacting protons, and the number of interaction sites. The micellar model gave more reliable results than the liposomal one. The preferential interaction of the peptide with DPPS was evidenced by the change of the chemical shifts of specific amino acids of the peptides. Our micellar model is thus well suited to mimic apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. MacFarlane M, Williams AC (2004) EMBO Rep 5(7):674–678. doi:10.1038/sj.embor.7400191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Laufer EM, Reutelingsperger CPM, Narula J, Hofstra L (2008) Basic Res Cardiol 103:95–104. doi:10.1007/s00395-008-0701-8

    Article  CAS  PubMed  Google Scholar 

  3. Friedlander RM (2003) N Engl J Med 348(14):1365–1375

    Article  CAS  PubMed  Google Scholar 

  4. Mallat Z, Tedgui A (2001) Circ Res 88:998–1003. doi:10.1161/hh1001.090571

    Article  CAS  PubMed  Google Scholar 

  5. Fadok VA, De Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) J Biol Chem 276:1071–1077. doi:10.1074/jbc.M003649200

    Article  CAS  PubMed  Google Scholar 

  6. Van Tilborg GAF, Mulder WJM, Deckers N, Storm G, Reutelingsperger CPM, Strijkers GJ, Nicolay K (2006) Bioconjugate Chem 17:741–749. doi:10.1021/bc0600259

    Article  Google Scholar 

  7. Baskic D, Popovic S, Ristic P, Arsenijevic NN (2006) Cell Biol Int 30:924–932. doi:10.1016/j.cellbi.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  8. Koulov AV, Hanshaw RG, Stucker KA, Lakshmi C, Smith BD (2005) Isr J Chem 45:373–379. doi:10.1560/6AD4-LC9G-P57M-BE5Y

    Article  CAS  Google Scholar 

  9. Van Tilborg GAF, Vucic E, Strijkers GJ, Cormode DP, Mani V, Skajaa T, Reutelingsperger CP, Fayad ZA, Mulder WJ, Nicolay K (2010) Bioconjug Chem 21(10):1794–1803. doi:10.1021/bc100091q

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hong H-Y, Choi JS, Kim YJ, Lee HY, Kwak W, Yoo J, Lee JT, Kwon T-H, Kim I-S, Han H-S, Lee B-H (2008) J Control Release 131:167–172. doi:10.1016/j.jconrel.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  11. Thapa N, Kim S, So I-S, Lee B-H, Kwon I-C, Choi K, Kim I-S (2008) J Cell Mol Med 12(5A):1649–1660. doi:10.1111/j.1582-4934.2008.00305.x

    Article  CAS  PubMed  Google Scholar 

  12. Laumonier C, Segers J, Laurent S, Alain M, Coppée F, Belayew A, Vander Elst L, Muller RN (2006) J Biomol Screen 11(5):537–545. doi:10.1177/1087057106288220

    Article  CAS  PubMed  Google Scholar 

  13. Burtea C, Laurent S, Lancelot E, Ballet E, Murariu O, Rousseaux O, Port M, VanderElst L, Corot C, Muller RN (2009) Mol Pharm 6(6):1903–1919. doi:10.1021/mp900106m

    Article  CAS  PubMed  Google Scholar 

  14. Wallner J, Lhota G, Jeschek D, Mader A, Vorauer-Uhl K (2013) J Pharm Biomed Anal 72:150–154. doi:10.1016/j.jpba.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Abdiche YN, Myszka DG (2004) Anal Biochem 328:233–243. doi:10.1016/j.ab.2004.01.018

    Article  CAS  PubMed  Google Scholar 

  16. Baird CL, Courtenay ES, Myszka DG (2002) Anal Biochem 310:93–99. doi:10.1016/S0003-2697(02)00278-6

    Article  CAS  PubMed  Google Scholar 

  17. Kapty J, Banman S, Goping IS, Mercer JR (2012) J Biomol Screen 17(10):1293–1301. doi:10.1177/1087057112453313

    Article  CAS  PubMed  Google Scholar 

  18. Cypionka A, Stein A, Hernandez JM, Hippchen H, Jahn R, Walla PJ (2009) Proc Natl Acad Sci USA 106(44):18575–18580. doi:10.1073/pnas.0906677106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Campillo CC, Schroder AP, Marques CM, Pépin-Donat B (2009) Mater Sci Eng C 29:393–397. doi:10.1016/j.msec.2008.08.001

    Article  CAS  Google Scholar 

  20. Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam

  21. Parac-Vogt TN, Kimpe K, Laurent S, Piérart C, VanderElst L, Muller RN, Binnemans K (2006) Eur Biophys J 35:136–144. doi:10.1002/ejic.200400187

    Article  CAS  PubMed  Google Scholar 

  22. Bartlett GR (1959) J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  23. Barenholz Y, Amselem S (1993) Quality control assays in the development and clinical use of liposome-based formulation. In: Gregoriadis G (ed) Liposome technology: liposome preparation and related techniques, 2nd edn. CRC, Boca Raton, pp 527–616

    Google Scholar 

  24. Fielding L, Rutherford S, Fletcher D (2005) Magn Reson Chem 43:463–470. doi:10.1002/mrc.1574

    Article  CAS  PubMed  Google Scholar 

  25. Fielding L (2007) Prog Nucl Magn Reson Spectrosc 51:219–242. doi:10.2174/1568026033392705

    Article  CAS  Google Scholar 

  26. Luo R-S, Liu M-L, Mao X-A (1999) Spectrosc Acta Part A 55:1897–1901

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Walloon Region (program First spin-off), the FNRS (Fonds National de la Recherche Scientifique), the UIAP VII and ARC Programs (AUWB-2010—10/15-UMONS-5) of the French Community of Belgium. The authors thank the Center for Microscopy and Molecular Imaging (CMMI, supported by the European Regional Development Fund and the Walloon Region).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luce Vander Elst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2014_1195_MOESM1_ESM.pdf

COSY spectrum of E3 peptide, COSY spectrum of E3 scramble peptide, COSY spectrum of R826 peptide, COSY spectrum of R826 scramble peptide, example of Z-average size of DPPC–DPPS (80–20 w/w) liposomes by intensity, example of Z-average size of DPPC liposomes by intensity, example of Z-average size of DPPC micelle by intensity, example of Z-average size of DPPS micelle by intensity (PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Koninckxloo, A., Henoumont, C., Laurent, S. et al. NMR chemical shift study of the interaction of selected peptides with liposomal and micellar models of apoptotic cells. J Biol Inorg Chem 19, 1367–1376 (2014). https://doi.org/10.1007/s00775-014-1195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1195-5

Keywords

Navigation