Skip to main content
Log in

Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

With its special physical and chemical properties, terbium has been widely used, which has inevitably increased the chance of human exposure to terbium-based compounds. It was reported that terbium mainly deposited in bone after introduction into the human body. Although some studies revealed the effects of terbium on bone cell lines, there have been few reports about the potential effect of terbium on adhesion and differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the effects of terbium on the adhesion and osteogenic and adipogenic differentiation of MSCs and the associated molecular mechanisms. Our data reveal that terbium promoted the osteogenic differentiation in a time-dependent manner and conversely inhibited the adipogenic differentiation of MSCs. Meanwhile, the cell–cell or cell–matrix interaction was enhanced by activating adherent-related key factors, which were evaluated by real-time reverse transcriptase polymerase chain reaction (RT-PCR). Real-time RT-PCR and Western blot analysis were also performed to further detect osteogenic and adipogenic biomarkers of MSCs. The regulation of terbium on differentiation of MSCs led to the interaction between the transforming growth factor β/bone morphogenetic protein and peroxisome-proliferator-activated receptor γ (PPARγ) signaling pathways, resulting in upregulation of the osteogenic master transcription factors, such as Runt-related transcription factor 2, bone morphogenetic protein 2, collagen I, alkaline phosphatase, and osteocalcin, and downregulation of the adipogenic master transcription factors, such as PPARγ2. The results provide novel evidence to elucidate the mechanisms of bone metabolism by terbium and may be helpful for more rational application of terbium-based compounds in the future.

Graphical abstract

The effects of terbium on the osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) and the associated molecular mechanisms were investigated. The results suggest that terbium promotes the osteogenic differentiation of MSCs via the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling pathway. ALP alkaline phosphatase, BSP bone sialoprotein, C/EBP CCAAT/enhancer binding protein, Col I collagen I, ERα estrogen receptor α, GDF growth differentiation factor, OCN osteocalcin, PPARγ peroxisome-proliferator-activated receptor γ, Runx2 Runt-related transcription factor 2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

AS:

Adipogenic induction supplement

BMP:

Bone morphogenetic protein

cDNA:

Complementary DNA

C/EBPα:

CCAAT/enhancer binding protein α

C/EBPβ:

CCAAT/enhancer binding protein β

C/EBPδ:

CCAAT/enhancer binding protein δ

DMEM:

Dulbecco’s modified Eagle’s medium

GDF:

Growth differentiation factor

HGF:

Hepatocyte growth factor

MCAM:

Melanoma cell adhesion molecule

MSC:

Mesenchymal stem cell

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

OD:

Optical density

OS:

Osteogenic induction supplement

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PPARγ:

Peroxisome-proliferator-activated receptor γ

p-Smad1/5/8:

Phosphorylated Smad1/5/8

RT-PCR:

Reverse transcriptase polymerase chain reaction

Runx2:

Runt-related transcription factor 2

SEM:

Scanning electron microscope

TBST:

10 mM tris(hydroxymethyl)aminomethane–HCl pH 8.0, 150 mM NaCl, 0.05 % Tween 20

TGF-β:

Transforming growth factor β

References

  1. Binnemans K (2009) Chem Rev 109:4283–4374

    Article  CAS  PubMed  Google Scholar 

  2. Ye ZQ, Tan MQ, Wang GL, Yuan JL (2005) Talanta 65:206–210

    CAS  PubMed  Google Scholar 

  3. Hussein BH, Azab HA, el-Azab MF, el-Falouji AI (2012) Eur J Med Chem 51:99–109

    Article  CAS  PubMed  Google Scholar 

  4. Kubícek V, Rudovský J, Kotek J, Hermann P, Vander Elst L, Muller RN, Kolar ZI, Wolterbeek HT, Peters JA, Lukes I (2005) J Am Chem Soc 127:16477–16485

    Article  PubMed  Google Scholar 

  5. Affiliations S (2006) Chem Soc Rev 35:524–533

    Article  Google Scholar 

  6. Owen M, Friedenstein AJ (1988) Ciba Found Symp 136:42–60

    CAS  PubMed  Google Scholar 

  7. Prockop DJ (1997) Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  8. Nuttall ME, Gimble JM (2000) Bone 27:177–184

    Article  CAS  PubMed  Google Scholar 

  9. Wang DQ, Haile A, Jones LC (2013) Bone 53:520–530

    Article  CAS  PubMed  Google Scholar 

  10. Tamama K, Sen CK, Wells A (2008) Stem Cells Dev 17:897–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. MacQueen L, Sun Y, Simmons CA (2013) J R Soc Interface 10:20130179

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liu DD, Yi CQ, Zhang DW, Zhang JC, Yang MS (2010) ACS Nano 4:2185–2195

    Article  CAS  PubMed  Google Scholar 

  13. Collett ED, Davidson LA, Fan YY, Lupton JR, Chapkin RS (2001) Am J Physiol Cell Physiol 280:C1066–C1075

    CAS  PubMed  Google Scholar 

  14. Sonowal H, Kumar A, Bhattacharyya J, Gogoi PK, Jaganathan BG (2013) J Biomed Sci 20:71–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang DW, Yi CQ, Zhang JC, Chen Y, Yao XS, Yang MS (2007) Nanotechnology 18:475102–475111

    Article  Google Scholar 

  16. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  17. Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS (2013) J Cell Biochem 114:1105–1114

    Article  CAS  PubMed  Google Scholar 

  18. Hsu Y-C, Fuchs E (2012) Nat Rev Mol Cell Biol 13:103–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wang YK, Chen CS (2013) J Cell Mol Med 17:823–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka RL (2007) J Bone Miner Res 22:1943–1956

    Article  CAS  PubMed  Google Scholar 

  21. Salasznyk RM, Williams WA, Boskey A, Plopper GE (2004) J Biomed Biotechnol 2004:24–34

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wang YK, Yu X, Cohen DM, Wozniak MA, Yang MT, Gao L, Eyckmans J, Chen CS (2012) Stem Cells Dev 21:1176–1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hashimoto J, Kariya Y, Miyazaki K (2006) Stem Cells 24:2346–2354

    Article  CAS  PubMed  Google Scholar 

  24. Berthon G (2002) Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  25. Li JX, Liu JC, Wang K, Yang XG (2010) J Biol Inorg Chem 15:547–557

    Article  CAS  PubMed  Google Scholar 

  26. Rzigalinski BA (2005) Technol Cancer Res Treat 4:651–659

    CAS  PubMed  Google Scholar 

  27. Li BJ (2008) Endocr Metab Immune Disord Drug Targets 8:208–219

    Article  CAS  PubMed  Google Scholar 

  28. Luo J, Tang M, Huang JY, He BC, Gao JL, Chen L, Guo WZ, Zhang WL, Luo Q, Shi Q, Zhang Q, Yang B, Luo XJ, Jian W, Su YX, Shen JK, Kim SH, Huang EY, Gao YH, Zhou JZ, Yang K, Luu HH, Pan XC, Haydon RC, Deng ZL, He TC (2010) J Biol Chem 285:29588–29598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhang F, Qiu T, Wu X, Wan C, Shi W, Wang Y, Chen JG, Wan M, Clemens TL, Cao X (2009) J Bone Miner Res 24:1224–1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Covas DT, Panepucci RA, Fontes AM, Silva WA, Orellana MD, Freitas MCC, Neder L, Santos ARD, Peres LC, Jamur MC, Zago MA (2008) Exp Hematol 36:642–654

    Article  CAS  PubMed  Google Scholar 

  31. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) Stem Cells 28:788–798

    Article  CAS  PubMed  Google Scholar 

  32. Elshal MF, Khan SS, Raghavachari N, Takahashi Y, Barb J, Bailey JJ, Munson PJ, Solomon MA, Danner RL, McCoy JP (2007) BMC Immunol 8:29–44

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rodrigues M, Griffith LG, Wells A (2010) Stem Cell Ther 1:32–37

    Article  Google Scholar 

  34. Tauber SC, Stadelmann C, Spreer A, Brück W, Nau R, Gerber J (2005) J Neuropathol Exp Neurol 64:806–815

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Ding F, Gu Y, Liu J, Gu XS (2009) Brain Res 1262:7–15

    Article  CAS  PubMed  Google Scholar 

  36. Benayahu D, Zipori D, Wientroub S (1993) Biochem Biophys Res Commun 197:1245–1252

    Article  CAS  PubMed  Google Scholar 

  37. Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Development 126:1305–1315

    CAS  PubMed  Google Scholar 

  38. Skolnick J, Fetrow JS, Kolinski A (2000) Nat Biotechnol 18:283–287

    Article  CAS  PubMed  Google Scholar 

  39. Snjezana M, Sanja M, Veronika K, Nikolina B, Jasminka JR, Fran B, Drago B, Petra S, Lovorka G, Boris L, Slobodan V (2004) J Histochem Cytochem 52:1159–1167

    Article  Google Scholar 

  40. Ducy P, Schinke T, Karsenty G (2000) Science 289:1501–1504

    Article  CAS  PubMed  Google Scholar 

  41. Liu HM, Zhang TL, Xu SJ, Wang K (2006) Chin Sci Bull 51:31–37

    Article  CAS  Google Scholar 

  42. Komori T (2003) J Bone Miner Metab 21:193–197

    CAS  PubMed  Google Scholar 

  43. Yi CQ, Liu DD, Fong CC, Zhang JC, Yang MS (2010) ACS Nano 4:6439–6448

    Article  CAS  PubMed  Google Scholar 

  44. Shi X, Chang Z, Blair H, McDonald J, Cao X (1998) Bone 23:S454

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 21271059 and 20971034), Research Fund for the Doctoral Program of Higher Education of China (No. 20111301110004), Hundred Excellent Innovation Talents Supporting Project of Hebei Province (BR2-201), and Training Program for Innovative Research Team and Leading Talent in Hebei Province University (LJRC024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chao Zhang.

Additional information

D.-D. Liu and K. Ge contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DD., Ge, K., Jin, Y. et al. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway. J Biol Inorg Chem 19, 879–891 (2014). https://doi.org/10.1007/s00775-014-1119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1119-4

Keywords

Navigation