Skip to main content
Log in

Copper(II) complexes with chicken prion repeats: influence of proline and tyrosine residues on the coordination features

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The prion protein (PrPc) is a copper-binding glycoprotein that can misfold into a β-sheet-rich and pathogenic isoform (PrPsc) leading to prion diseases. The first non-mammalian PrPc was identified in chicken and it was found to keep many structural motifs present in mammalian PrPc, despite the low sequence identity (approximately 40%) between the two primary structures. The present paper describes the synthesis and the coordination properties of some hexapeptide fragments (namely, PHNPGY , HNPGYP and NPGYPH) as well as a bishexapeptide (PHNPGYPHNPGY), which encompasses two hexarepeats. The copper(II) complexes were characterized by means of potentiometric, UV–vis, circular dichroism and electron paramagnetic resonance techniques. We also report the synthesis of three hexapeptides (PHNPGF, HNPGFP and NPGFPH), in which one tyrosine was replaced by phenylalanine as well as two bishexapeptides in which either one (PHNPGFPHNPGY and PHNPGYPHNPGF), or two tyrosines were replaced by phenylalanine, in order to check whether tyrosine was involved in copper(II) binding. Overall, the results indicate that the major copper(II) species formed by the chicken PrP dodecapeptides are stabler than the analogous species reported for the peptide fragments containing two octarepeat peptides from the mammalian prion protein. It is concluded that the presence of four prolyl residues, that are break points in copper coordination, induces the metal-assisted formation of macrochelates as well as the formation of binuclear species. Furthermore, it has been shown that the phenolic group is directly involved in the formation of copper binuclear species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prusiner SB (1997) Science 278:245–251

    PubMed  CAS  Google Scholar 

  2. Prusiner SB (1998) Cell 93:337–348

    PubMed  CAS  Google Scholar 

  3. Brown DR, Qin KF, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, Vonbohlen A, Schulzschaeffer W, Giese A, Westaway D, Kretzschmar H (1997) Nature 390:684–687

    PubMed  ADS  CAS  Google Scholar 

  4. Lehmann S (2002) Curr Opin Chem Biol 6:187–192

    PubMed  CAS  Google Scholar 

  5. Vassallo N, Herms J (2003) J Neurochem 86:538–544

    PubMed  CAS  Google Scholar 

  6. Brown DR (2003) J Neurochem 87:377–385

    PubMed  CAS  Google Scholar 

  7. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Proc Natl Acad Sci USA 96:2042–2046

    PubMed  ADS  CAS  Google Scholar 

  8. Whittal RM, Ball HL, Cohen FE, Burlingame AL, Prusiner SB, Baldwin MA (2000) Protein Sci 9:332–343

    Article  PubMed  CAS  Google Scholar 

  9. Millhauser GL (2004) Acc Chem Res 37:79–85

    PubMed  CAS  Google Scholar 

  10. Jackson GS, Murray I, Hosszu LLP, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Proc Natl Acad Sci USA 98:8531–8535

    PubMed  ADS  CAS  Google Scholar 

  11. Kramer ML, Kratzin HD, Schmdt B, Romer A, Windl O, Liemann S, Hornemann S, Kretzschmar H (2001) J Biol Chem 276:16711–16719

    PubMed  CAS  Google Scholar 

  12. Garnett AP, Viles JH (2003) J Biol Chem 278:6795–6802

    PubMed  CAS  Google Scholar 

  13. Luczkowski M, Kozlowski H, Stawikowski M, Rolka K, Gaggelli E, Valensin D, Valensin G (2002) J Chem Soc Dalton Trans 2269–2275

  14. Valensin D, Luczkowski M, Mancini FM, Legowska A, Gaggelli E, Valensin G, Rolka K, Kozlowski H (2004) J Chem Soc Dalton Trans 1284–1293

  15. Harris DA, Falls DL, Johnson FA, Fischbach GD (1991) Proc Natl Acad Sci USA 88:7664–7668

    PubMed  ADS  CAS  Google Scholar 

  16. Gabriel JM, Oesch B, Kretzschamer H, Scott M, Prusiner SB (1992) Proc Natl Acad Sci USA 89:9097–9101

    PubMed  ADS  CAS  Google Scholar 

  17. Calzolai L, Lysek DA, Perez DR, Guntert P, Wuthrich K (2005) Proc Natl Acad Sci USA 102:651–655

    PubMed  ADS  CAS  Google Scholar 

  18. Marcotte EM, Eisenberg D (1999) Biochemistry 38:667–676

    PubMed  CAS  Google Scholar 

  19. Hornshaw MP, McDermott JR, Candy JM (1995) Biochem Biophys Res Commun 20:621–629

    Google Scholar 

  20. Hornshaw MP, McDermott JR, Candy JM, Lakey JH (1995) Biochem Biophys Res Commun 214:993–999

    PubMed  CAS  Google Scholar 

  21. Pettit LD, Robbins RA (1995) In: Berthon G (ed) Handbook of metal–ligand interactions in biological fluids. Dekker, New York, pp 636–656

  22. Bonomo RP, La Mendola D, Maccarrone G, Pappalardo G, Rizzarelli E (2003) J Inorg Biochem 96:190

    Google Scholar 

  23. Bonomo RP, Impellizzeri G, Pappalardo G, Rizzarelli E, Tabbì G (2000) Chem Eur J 6:4195–4202

    CAS  Google Scholar 

  24. Stanczak P, Luczkowski M, Juszczyk P, Grzonka Z, Kozlowski H (2004) J Chem Soc Dalton Trans 2102–2107

  25. Arena G, Calì R, Rizzarelli E, Sammartano S (1976) Thermochim Acta 16:315

    CAS  Google Scholar 

  26. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739–1753

    PubMed  CAS  Google Scholar 

  27. Bonomo RP, Calì R, Cucinotta V, Impellizzeri G, Rizzarelli E (1986) Inorg Chem 25:1641–1646

    CAS  Google Scholar 

  28. Gampp H, Maeder M, Meyer CJ, Zuberbuhler D (1985) Talanta 32:257–264

    CAS  Google Scholar 

  29. Bonomo RP, Bruno V, Conte E, De Guidi G, La Mendola D, Maccarroine G, Nicoletti F, Rizzarelli E, Sortino S, Vecchio G (2003) Dalton Trans 4406–4415

  30. Hefford RJW, Pettit LD (1981) J Chem Soc Dalton Trans 1331–1335

  31. Pettit LD, Steel I, Kovalik T, Kozlowski H, Bataille M (1985) J Chem Soc Dalton Trans 1201–1205

  32. Livera C, Pettit LD, Bataille M, Krembel J, Bal W, Kozlowski H (1988) J Chem Soc Dalton Trans 1357–1360

  33. Kiss T, Szucs Z (1986) J Chem Soc Dalton Trans 2443–2447

  34. Kiss T (1987) J Chem Soc Dalton Trans 1263–1265

  35. Brahmachari SK, Bhat TN, Sudhakar V, Vijayan M, Rapaka SR, Bhatnagar RS, Ananthanarayanan VS (1981) J Am Chem Soc 103:1703–1708

    CAS  Google Scholar 

  36. Zahn R, Liu A, Luhrs T, Riek R, Von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) Proc Natl Acad Sci USA 97:145–150

    PubMed  ADS  CAS  Google Scholar 

  37. Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) Proc Natl Acad Sci USA 97:8334–8339

    PubMed  ADS  CAS  Google Scholar 

  38. Koslowski A, Sreerama N, Woody RW (2000) In: Berova N, Nakanishi K, Woody RW (eds) Circular dichroism. Wiley-VCH, New York

  39. Woody RW (1996) In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York

  40. Feller SM, Ren R, Hanafusa H, Baltimore D (1994) Trends Biochem Sci 19:453–458

    PubMed  CAS  Google Scholar 

  41. Simon JA, Schreiber SL (1995) Chem Biol 2:53–60

    PubMed  CAS  Google Scholar 

  42. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Cell 85:931–942

    PubMed  CAS  Google Scholar 

  43. Woody RW (1992) Adv Biophys Chem 2:37–79

    CAS  Google Scholar 

  44. Bienkiewicz E, Woody A-Y, Woody RW (2000) J Mol Biol 297:119–133

    PubMed  CAS  Google Scholar 

  45. Dalcol I, Pons M, Ludevid MD, Giralt E (1996) J Org Chem 61:6775–6782

    PubMed  CAS  Google Scholar 

  46. Petrella EC, Machesky LM, Kaiser DA, Polaard TD (1996) Biochemistry 35:16535–16543

    PubMed  CAS  Google Scholar 

  47. Park SH, Shalongo W, Stellwagen E (1997) Protein Sci 6:1694–1700

    Article  PubMed  CAS  Google Scholar 

  48. Kelly MA, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Fried A-F, Creamer TP (2001) Biochemistry 40:14376–14383

    PubMed  CAS  Google Scholar 

  49. Brookes G, Pettit LD (1975) J Chem Soc Dalton Trans 2106–2112

  50. Pettit LD, Steel I, Formicka-Kozlowki G, Kozlowski H, Tatarowski T, Bataille M (1985) J Chem Soc Dalton Trans 535–539

  51. Toni M, Massimino ML, Griffoni C, Salvato B, Tomasi V, Spisni E (2005) FEBS Lett 579:741–744

    PubMed  CAS  Google Scholar 

  52. Matthews D, Cooke BC (2003) Rev Sci Tech 22:283–296

    PubMed  CAS  Google Scholar 

  53. Lysek DA, Wuthrich K (2004) Biochemistry 43:10393–10399

    PubMed  CAS  Google Scholar 

  54. Kovacs GG, Trabattoni G, Hainfellner JA, Ironside JW, Kinght RS, Budka H (2002) J Neurol 249:1567–1582

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the University of Catania, CNR Rome, and MIUR (PRIN-2003031424 and grant no.196 D.M. 1105/2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Rizzarelli.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Mendola, D., Bonomo, R.P., Impellizzeri, G. et al. Copper(II) complexes with chicken prion repeats: influence of proline and tyrosine residues on the coordination features. J Biol Inorg Chem 10, 463–475 (2005). https://doi.org/10.1007/s00775-005-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0659-z

Keywords

Navigation