Skip to main content

Advertisement

Log in

Immediate effects of retinoic acid on gene expression in primary murine osteoblasts

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Consistent with clinical observations demonstrating that hypervitaminosis A is associated with increased skeletal fracture risk, we have previously found that dietary retinol deprivation partially corrects the bone mineralization defects in a mouse model of X-linked hypophosphatemic rickets. That retinol-dependent signaling pathways impact the skeleton is further supported by various findings demonstrating a negative influence of retinoic acid (RA) on bone-forming osteoblasts. We hypothesized that RA would directly regulate the expression of specific target genes in osteoblasts, and we aimed to identify these by genome-wide expression analyses. Here we show that high dietary retinol intake in mice causes low bone mass associated with increased osteoclastogenesis and decreased osteoblastogenesis, but intact bone matrix mineralization. We additionally found that short-term treatment of primary osteoblasts with RA causes a rapid induction of specific genes involved in either retinol-dependent signaling (i.e. Rara, Crabp2) or skeletal remodeling (i.e. Twist2, Tnfsf11). In contrast, neither expression of established osteoblast differentiation markers nor the proliferation rate was immediately affected by RA administration. Collectively, our data suggest that the negative effects of vitamin A on skeletal integrity are explainable by an immediate influence of RA signaling on specific genes in osteoblasts that in turn influence bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Niederreither K, Dolle P (2008) Retinoic acid in development: towards an integrated view. Nat Rev Genet 9:541–553

    Article  CAS  PubMed  Google Scholar 

  2. Conaway HH, Henning P, Lerner UH (2013) Vitamin A metabolism, action, and role in skeletal homeostasis. Endocr Rev 34:766–797

    Article  CAS  PubMed  Google Scholar 

  3. Chiba M, Teitelbaum SL, Cao X, Ross FP (1996) Retinoic acid stimulates expression of the functional osteoclast integrin alpha v beta 3: transcriptional activation of the beta 3 but not the alpha v gene. J Cell Biochem 62:467–475

    Article  CAS  PubMed  Google Scholar 

  4. Hata K, Kukita T, Akamine A, Kukita A, Kurisu K (1992) Trypsinized osteoclast-like multinucleated cells formed in rat bone marrow cultures efficiently form resorption lacunae on dentine. Bone 13:139–146

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Wu J, Shidoji Y, Muto Y, Ohishi N, Yagi K, Ikegami S, Shinki T, Udagawa N, Suda T, Ishimi Y (2002) Effects of geranylgeranoic acid in bone: induction of osteoblast differentiation and inhibition of osteoclast formation. J Bone Miner Res 17:91–100

    Article  CAS  PubMed  Google Scholar 

  6. Conaway HH, Persson E, Halen M, Granholm S, Svensson O, Pettersson U, Lie A, Lerner UH (2009) Retinoids inhibit differentiation of hematopoietic osteoclast progenitors. FASEB J 23:3526–3538

    Article  CAS  PubMed  Google Scholar 

  7. Kneissel M, Studer A, Cortesi R, Susa M (2005) Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone 36:202–214

    Article  CAS  PubMed  Google Scholar 

  8. Hu L, Lind T, Sundqvist A, Jacobson A, Melhus H (2010) Retinoic acid increases proliferation of human osteoclast progenitors and inhibits RANKL-stimulated osteoclast differentiation by suppressing RANK. PLoS One 5:e13305

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park CK, Ishimi Y, Ohmura M, Yamaguchi M, Ikegami S (1997) Vitamin A and carotenoids stimulate differentiation of mouse osteoblastic cells. J Nutr Sci Vitaminol (Tokyo) 43:281–296

    Article  CAS  Google Scholar 

  10. Ohishi K, Nishikawa S, Nagata T, Yamauchi N, Shinohara H, Kido J, Ishida H (1995) Physiological concentrations of retinoic acid suppress the osteoblastic differentiation of fetal rat calvaria cells in vitro. Eur J Endocrinol 133:335–341

    Article  CAS  PubMed  Google Scholar 

  11. Yan T, Wergedal J, Zhou Y, Mohan S, Baylink DJ, Strong DD (2001) Inhibition of human osteoblast marker gene expression by retinoids is mediated in part by insulin-like growth factor binding protein-6. Growth Horm IGF Res 11:368–377

    Article  CAS  PubMed  Google Scholar 

  12. Cohen-Tanugi A, Forest N (1998) Retinoic acid suppresses the osteogenic differentiation capacity of murine osteoblast-like 3/A/1D-1 M cell cultures. Differentiation 63:115–123

    Article  CAS  PubMed  Google Scholar 

  13. Hong SH, Mochizuki M, Nishimura R, Sasaki N, Kadosawa T, Matsunaga S (2000) Differentiation induction of canine osteosarcoma cell lines by retinoids. Res Vet Sci 68:57–62

    Article  CAS  PubMed  Google Scholar 

  14. Michaelsson K, Lithell H, Vessby B, Melhus H (2003) Serum retinol levels and the risk of fracture. N Engl J Med 348:287–294

    Article  CAS  PubMed  Google Scholar 

  15. Feskanich D, Singh V, Willett WC, Colditz GA (2002) Vitamin A intake and hip fractures among postmenopausal women. JAMA 287:47–54

    Article  CAS  PubMed  Google Scholar 

  16. Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E (2002) Retinol intake and bone mineral density in the elderly: the Rancho Bernardo Study. J Bone Miner Res 17:1349–1358

    Article  CAS  PubMed  Google Scholar 

  17. Wolf RL, Cauley JA, Pettinger M, Jackson R, Lacroix A, Leboff MS, Lewis CE, Nevitt MC, Simon JA, Stone KL, Wactawski-Wende J (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women’s Health Initiative. Am J Clin Nutr 82:581–588

    CAS  PubMed  Google Scholar 

  18. Rejnmark L, Vestergaard P, Charles P, Hermann AP, Brot C, Eiken P, Mosekilde L (2004) No effect of vitamin A intake on bone mineral density and fracture risk in perimenopausal women. Osteoporos Int 15:872–880

    Article  CAS  PubMed  Google Scholar 

  19. Ballew C, Galuska D, Gillespie C (2001) High serum retinyl esters are not associated with reduced bone mineral density in the Third National Health And Nutrition Examination Survey, 1988–1994. J Bone Miner Res 16:2306–2312

    Article  CAS  PubMed  Google Scholar 

  20. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825

    Article  CAS  PubMed  Google Scholar 

  22. Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farres J, Pares X, Duester G (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99:5337–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey JP, Ma JX, Staehling-Hampton K, Trainor PA (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dupe V, Matt N, Garnier JM, Chambon P, Mark M, Ghyselinck NB (2003) A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci USA 100:14036–14041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piletta P, Saurat JH (1993) Cellular retinoic acid-binding proteins (CRABP). Exp Dermatol 2:191–195

    Article  CAS  PubMed  Google Scholar 

  26. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58:712–725

    Article  CAS  PubMed  Google Scholar 

  27. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:760–772

    Article  PubMed  Google Scholar 

  28. White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272:18538–18541

    Article  CAS  PubMed  Google Scholar 

  29. Marikar Y, Wang Z, Duell EA, Petkovich M, Voorhees JJ, Fisher GJ (1998) Retinoic acid receptors regulate expression of retinoic acid 4-hydroxylase that specifically inactivates all-trans retinoic acid in human keratinocyte HaCaT cells. J Invest Dermatol 111:434–439

    Article  CAS  PubMed  Google Scholar 

  30. Sonneveld E, van den Brink CE, van der Leede BM, Schulkes RK, Petkovich M, van der Burg B, van der Saag PT (1998) Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells. Cell Growth Differ 9:629–637

    CAS  PubMed  Google Scholar 

  31. Sonneveld E, van den Brink CE, Tertoolen LG, van der Burg B, van der Saag PT (1999) Retinoic acid hydroxylase (CYP26) is a key enzyme in neuronal differentiation of embryonal carcinoma cells. Dev Biol 213:390–404

    Article  CAS  PubMed  Google Scholar 

  32. Schinke T, Gebauer M, Schilling AF, Lamprianou S, Priemel M, Mueldner C, Neunaber C, Streichert T, Ignatius A, Harroch S, Amling M (2008) The protein tyrosine phosphatase Rptpzeta is expressed in differentiated osteoblasts and affects bone formation in mice. Bone 42:524–534

    Article  CAS  PubMed  Google Scholar 

  33. Seitz S, Rendenbach C, Barvencik F, Streichert T, Jeschke A, Schulze J, Amling M, Schinke T (2013) Retinol deprivation partially rescues the skeletal mineralization defects of Phex-deficient Hyp mice. Bone 53:231–238

    Article  CAS  PubMed  Google Scholar 

  34. Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, Amling M, Schinke T (2013) Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol 200:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  36. Rendenbach C, Yorgan TA, Heckt T, Otto B, Baldauf C, Jeschke A, Streichert T, David JP, Amling M, Schinke T (2014) Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int 94:474–483

    Article  CAS  PubMed  Google Scholar 

  37. Trechsel U, Stutzer A, Fleisch H (1987) Hypercalcemia induced with an arotinoid in thyroparathyroidectomized rats. New model to study bone resorption in vivo. J Clin Invest 80:1679–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hough S, Avioli LV, Muir H, Gelderblom D, Jenkins G, Kurasi H, Slatopolsky E, Bergfeld MA, Teitelbaum SL (1988) Effects of hypervitaminosis A on the bone and mineral metabolism of the rat. Endocrinology 122:2933–2939

    Article  CAS  PubMed  Google Scholar 

  39. Lind T, Lind PM, Jacobson A, Hu L, Sundqvist A, Risteli J, Yebra-Rodriguez A, Larsson S, Rodriguez-Navarro A, Andersson G, Melhus H (2011) High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone 48:496–506

    Article  CAS  PubMed  Google Scholar 

  40. Raisz LG (1965) Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. J Clin Invest 44:103–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Togari A, Kondo M, Arai M, Matsumoto S (1991) Effects of retinoic acid on bone formation and resorption in cultured mouse calvaria. Gen Pharmacol 22:287–292

    Article  CAS  PubMed  Google Scholar 

  42. Conaway HH, Grigorie D, Lerner UH (1997) Differential effects of glucocorticoids on bone resorption in neonatal mouse calvariae stimulated by peptide and steroid-like hormones. J Endocrinol 155:513–521

    Article  CAS  PubMed  Google Scholar 

  43. Conaway HH, Pirhayati A, Persson E, Pettersson U, Svensson O, Lindholm C, Henning P, Tuckermann J, Lerner UH (2011) Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor. J Biol Chem 286:31425–31436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scheven BA, Hamilton NJ (1990) Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms. Bone 11:53–59

    Article  CAS  PubMed  Google Scholar 

  45. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  47. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    Article  CAS  PubMed  Google Scholar 

  48. Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, Jacobson A, Melhus H (2013) Vitamin A is a negative regulator of osteoblast mineralization. PLoS One 8:e82388

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hisada K, Hata K, Ichida F, Matsubara T, Orimo H, Nakano T, Yatani H, Nishimura R, Yoneda T (2013) Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab 31:53–63

    Article  CAS  PubMed  Google Scholar 

  50. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  51. Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, Szwedowski M, Ke C, Kupic A, Leder BZ, Goessl C (2009) Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    Article  CAS  PubMed  Google Scholar 

  53. Miraoui H, Marie PJ (2010) Pivotal role of Twist in skeletal biology and pathology. Gene 468:1–7

    Article  CAS  PubMed  Google Scholar 

  54. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Bruning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research within the framework of the project “Molecular Pathology of Osteoporosis” (OsteoPath).

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Schinke.

Additional information

T. Yorgan, T. Heckt and C. Rendenbach contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

774_2015_666_MOESM1_ESM.pdf

Supplementary material 1 (PDF 17 kb) Supplementary Table 1. ATRA-induced genes in primary osteoblasts. The results of genome-wide expression analysis in primary osteoblasts following treatment with ATRA for 6 h are shown. The signal intensities and the logarithmic ratios of signal intensities (signal log ratio, SLR) are given. The table includes all genes with a signal intensity >100 and an SLR >2.0

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yorgan, T.A., Heckt, T., Rendenbach, C. et al. Immediate effects of retinoic acid on gene expression in primary murine osteoblasts. J Bone Miner Metab 34, 161–170 (2016). https://doi.org/10.1007/s00774-015-0666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0666-2

Keywords

Navigation