Skip to main content
Log in

The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The study’s aim was to analyse whether children’s bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6–12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, Andon MB, Smith KT, Heaney RP (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93:799–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  CAS  PubMed  Google Scholar 

  3. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  4. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  5. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pollitzer WS, Anderson JJ (1989) Ethnic and genetic differences in bone mass: a review with a hereditary vs environmental perspective. Am J Clin Nutr 50:1244–1259

    CAS  PubMed  Google Scholar 

  7. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9

    Article  CAS  PubMed  Google Scholar 

  8. Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin North Am 32:39–63

    Article  PubMed  Google Scholar 

  9. Schoenau E, Frost HM (2002) The “muscle-bone unit” in children and adolescents. Calcif Tissue Int 70:405–407

    Article  CAS  PubMed  Google Scholar 

  10. Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40:14–27

    Article  CAS  PubMed  Google Scholar 

  11. Cassell C, Benedict M, Specker B (1996) Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 28:1243–1246

    Article  CAS  PubMed  Google Scholar 

  12. Baptista F, Barrigas C, Vieira F, Santa-Clara H, Homens PM, Fragoso I, Teixeira PJ, Sardinha LB (2012) The role of lean body mass and physical activity in bone health in children. J Bone Miner Metab 30:100–108

    Article  PubMed  Google Scholar 

  13. Specker B, Vukovich M (2007) Evidence for an interaction between exercise and nutrition for improved bone health during growth. Med Sport Sci 51:50–63

    Article  PubMed  Google Scholar 

  14. Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12:1280–1288

    Article  CAS  PubMed  Google Scholar 

  15. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman JJ, Einhorn TA (1993) Ultrasound assessment of bone. J Bone Miner Res 8:517–525

    Article  CAS  PubMed  Google Scholar 

  17. Robinson ML, Winters-Stone K, Gabel K, Dolny D (2007) Modifiable lifestyle factors affecting bone health using calcaneus quantitative ultrasound in adolescent girls. Osteoporos Int 18:1101–1117

    Article  CAS  PubMed  Google Scholar 

  18. Dib L, Arabi A, Maalouf J, Nabulsi M, El-Hajj Fuleihan G (2005) Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone 36:736–742

    Article  PubMed  Google Scholar 

  19. Duquette J, Lin J, Hoffman A, Houde J, Ahmadi S, Baran D (1997) Correlations among bone mineral density, broadband ultrasound attenuation, mechanical indentation testing, and bone orientation in bovine femoral neck samples. Calcif Tissue Int 60:181–186

    Article  CAS  PubMed  Google Scholar 

  20. Gluer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporos Int 3:185–191

    Article  CAS  PubMed  Google Scholar 

  21. Cvijetic S, Baric IC, Bolanca S, Juresa V, Ozegovic DD (2003) Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56:591–597

    Article  PubMed  Google Scholar 

  22. Hagstromer M, Bergman P, De Bourdeaudhuij I, Ortega FB, Ruiz JR, Manios Y, Rey-Lopez JP, Phillipp K, von Berlepsch J, Sjöström M (2008) Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: the HELENA Study. Int J Obes (Lond) 32:42–48

    Article  Google Scholar 

  23. Bassett DR (2000) Validity and reliability issues in objective monitoring of physical activity. Res Q Exerc Sport 71:30–36

    Article  PubMed  Google Scholar 

  24. Gracia-Marco L, Moreno LA, Ortega FB, Leon F, Sioen I, Kafatos A, Martinez-Gomez D, Widhalm K, Castillo MJ, Vicente-Rodriguez G (2011) Levels of physical activity that predict optimal bone mass in adolescents: the HELENA study. Am J Prev Med 40:599–607

    Article  PubMed  Google Scholar 

  25. Michels N, Vanaelst B, Vyncke K, Sioen I, Huybrechts I, De Vriendt T, De Henauw S (2012) Children’s body composition and stress––the ChiBS study: aims, design, methods, population and participation characteristics. Arch Public Health 70:17

    Article  PubMed Central  PubMed  Google Scholar 

  26. McCrory MA, Gomez TD, Bernauer EM, Mole PA (1995) Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc 27:1686–1691

    Article  CAS  PubMed  Google Scholar 

  27. Fields DA, Hull HR, Cheline AJ, Yao M, Higgins PB (2004) Child-specific thoracic gas volume prediction equations for air-displacement plethysmography. Obes Res 12:1797–1804

    Article  PubMed  Google Scholar 

  28. Wells JC, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, Haroun D, Wilson C, Cole TJ, Fewtrell MS (2010) Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20 y. Am J Clin Nutr 91:610–618

    Article  CAS  PubMed  Google Scholar 

  29. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J (1995) Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 56:368–371

    Article  CAS  PubMed  Google Scholar 

  30. Economos CD, Sacheck JM, Wacker W, Shea K, Naumova EN (2007) Precision of lunar achilles + bone quality measurements: time dependency and multiple machine use in field studies. Br J Radiol 80:919–925

    Article  CAS  PubMed  Google Scholar 

  31. Ekelund U, Sjostrom M, Yngve A, Poortvliet E, Nilsson A, Froberg K, Wedderkopp N, Westerterp K (2001) Physical activity assessed by activity monitor and doubly labeled water in children. Med Sci Sports Exerc 33:275–281

    Article  CAS  PubMed  Google Scholar 

  32. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG (2008) Calibration of two objective measures of physical activity for children. J Sports Sci 26:1557–1565

    Article  PubMed  Google Scholar 

  33. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43:1360–1368

    Article  PubMed  Google Scholar 

  34. Huybrechts I, De Bacquer D, Matthys C, De Backer G, De Henauw S (2006) Validity and reproducibility of a semi-quantitative food-frequency questionnaire for estimating calcium intake in Belgian preschool children. Br J Nutr 95:802–816

    Article  CAS  PubMed  Google Scholar 

  35. Hasselstrom HA, Karlsson MK, Hansen SE, Gronfeldt V, Froberg K, Andersen LB (2008) A 3-year physical activity intervention program increases the gain in bone mineral and bone width in prepubertal girls but not boys: the prospective copenhagen school child interventions study (CoSCIS). Calcif Tissue Int 83:243–250

    Article  CAS  PubMed  Google Scholar 

  36. UNESCO (1997) International Standard Classification of Education (ISCED 1997). UNESCO http://www.unesco.org/education/information/nfsunesco/doc/isced_1997.htm.2013

  37. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 46:977–984

    Article  PubMed Central  PubMed  Google Scholar 

  38. Frazier PA, Tix AP, Barron KE (2004) Testing moderator and mediator effects in counseling psychology research. J Couns Psychol 51:115–134

    Article  Google Scholar 

  39. Caroli A, Poli A, Ricotta D, Banfi G, Cocchi D (2011) Invited review: dairy intake and bone health: a viewpoint from the state of the art. J Dairy Sci 94:5249–5262

    Article  CAS  PubMed  Google Scholar 

  40. Chan GM, Hoffman K, McMurry M (1995) Effects of dairy products on bone and body composition in pubertal girls. J Pediatr 126:551–556

    Article  CAS  PubMed  Google Scholar 

  41. Novotny R, Daida YG, Grove JS, Acharya S, Vogt TM, Paperny D (2004) Adolescent dairy consumption and physical activity associated with bone mass. Prev Med 39:355–360

    Article  PubMed  Google Scholar 

  42. Moore LL, Bradlee ML, Gao D, Singer MR (2008) Effects of average childhood dairy intake on adolescent bone health. J Pediatr 153:667–673

    Article  PubMed Central  PubMed  Google Scholar 

  43. Merrilees MJ, Smart EJ, Gilchrist NL, Frampton C, Turner JG, Hooke E, March RL, Maquire P (2000) Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 39:256–262

    Article  CAS  PubMed  Google Scholar 

  44. Weinsier RL, Krumdieck CL (2000) Dairy foods and bone health: examination of the evidence. Am J Clin Nutr 72:681–689

    CAS  PubMed  Google Scholar 

  45. Hirota T, Kusu T, Hirota K (2005) Improvement of nutrition stimulates bone mineral gain in Japanese school children and adolescents. Osteoporos Int 16:1057–1064

    Article  PubMed  Google Scholar 

  46. Lanou AJ, Berkow SE, Barnard ND (2005) Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115:736–743

    Article  PubMed  Google Scholar 

  47. Babaroutsi E, Magkos F, Manios Y, Sidossis LS (2005) Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab 23:157–166

    Article  PubMed  Google Scholar 

  48. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7:7–22

    Article  CAS  PubMed  Google Scholar 

  49. Gracia-Marco L, Ortega FB, Casajus JA, Sioen I, Widhalm K, Beghin L, Vicente-Rodriguez G, Moreno LA (2012) Socioeconomic status and bone mass in Spanish adolescents. The HELENA Study. J Adolesc Health 50:484–490

    Article  PubMed  Google Scholar 

  50. Sioen I, Mouratidou T, Herrmann D, De Henauw S, Kaufman JM, Molnar D, Moreno LA, Marild S, Barba G, Siani A, Gianfagna F, Tornaritis M, Veidebaum T, Ahrens W (2012) Relationship between markers of body fat and calcaneal bone stiffness differs between preschool and primary school children: results from the IDEFICS baseline survey. Calcif Tissue Int 91:276–285

    Article  CAS  PubMed  Google Scholar 

  51. Karlsson M, Bass S, Seeman E (2001) The evidence that exercise during growth or adulthood reduces the risk of fragility fractures is weak. Best Pract Res Clin Rheumatol 15:429–450

    Article  CAS  PubMed  Google Scholar 

  52. Courteix D, Jaffre C, Lespessailles E, Benhamou L (2005) Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med 26:332–338

    Article  CAS  PubMed  Google Scholar 

  53. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay M (2009) A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review. Int J Pediatr Obes 4:2–27

    Article  PubMed  Google Scholar 

  54. Mughal MZ, Langton CM, Utretch G, Morrison J, Specker BL (1996) Comparison between broad-band ultrasound attenuation of the calcaneum and total body bone mineral density in children. Acta Paediatr 85:663–665

    Article  CAS  PubMed  Google Scholar 

  55. Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the participants and their parents for their willingness to wear the accelerometer as accurately as possible and their enthusiasm to participate in our study. We would also like to thank Eveline Van Cauwenberghe for her help in the processing of the accelerometry data. Nathalie Michels is financially supported by the research council of Ghent University (Bijzonder Onderzoeksfonds). Isabelle Sioen and Sara D’Haese are financially supported by the Research Foundation––Flanders (FWO). Inge Roggen received a grant from the Belgian Study Group for Pediatric Endocrinology. All authors have reviewed and approved the present article. The authors certify that there is no conflict of interest with any financial organization regarding the results discussed in the manuscript.

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie De Smet.

About this article

Cite this article

De Smet, S., Michels, N., Polfliet, C. et al. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children. J Bone Miner Metab 33, 192–200 (2015). https://doi.org/10.1007/s00774-014-0577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-014-0577-7

Keywords

Navigation