Skip to main content
Log in

Cortical and trabecular bone structure analysis at the distal radius—prediction of biomechanical strength by DXA and MRI

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate whether the combination of dual-energy X-ray absorptiometry (DXA)-based bone mass and magnetic resonance imaging (MRI)-based cortical and trabecular structural measures improves the prediction of radial bone strength. Thirty-eight left forearms were harvested from formalin-fixed human cadavers. Bone mineral content (BMC) and bone mineral density (BMD) of the distal radius were measured using DXA. Cortical and trabecular structural measures of the distal radius were computed in high-resolution 1.5T MR images. Cortical measures included average cortical thickness and cross-sectional area. Trabecular measures included morphometric and texture parameters. The forearms were biomechanically tested in a fall simulation to measure absolute radial bone strength (failure load). Relative radial bone strength was determined by dividing radial failure loads by age, body mass index, radius length, and average radius cross-sectional area, respectively. DXA derived BMC and BMD showed statistically significant (p < 0.05) correlations with absolute and relative radial bone strength (r ≤ 0.78). Correlation coefficients for cortical and trabecular structural measures with absolute and relative radial bone strength amounted up to r = 0.59 and r = 0.74, respectively, (p < 0.05). In combination with DXA-based bone mass, trabecular but not, cortical structural measures, added in multiple regression models significant (p < 0.05) information in predicting absolute and relative radial bone strength (up to R adj = 0.88). Thus, a combination of DXA-based bone mass and MRI-based trabecular structural measures most accurately predicted absolute and relative radial bone strength, whereas structural measures of the cortex did not provide significant additional information in combination with DXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Highlights of the conference. South Med J 94:569–573

    Google Scholar 

  2. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10:92–96

    Article  PubMed  Google Scholar 

  3. Warriner AH, Patkar NM, Curtis JR, Delzell E, Gary L, Kilgore M, Saag K (2011) Which fractures are most attributable to osteoporosis? J Clin Epidemiol 64:46–53

    Article  PubMed  Google Scholar 

  4. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16:S3–S7

    Article  PubMed  Google Scholar 

  5. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, Kennedy CC, Prior JC, Olszynski WP, Davison KS, Goltzman D, Thabane L, Gafni A, Papadimitropoulos EA, Brown JP, Josse RG, Hanley DA, Adachi JD (2009) Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 181:265–271

    Article  PubMed  Google Scholar 

  6. Lips P, van Schoor NM (2005) Quality of life in patients with osteoporosis. Osteoporos Int 16:447–455

    Article  PubMed  Google Scholar 

  7. Haentjens P, Johnell O, Kanis JA, Bouillon R, Cooper C, Lamraski G, Vanderschueren D, Kaufman JM, Boonen S (2004) Evidence from data searches and life-table analyses for gender-related differences in absolute risk of hip fracture after Colles’ or spine fracture: colles’ fracture as an early and sensitive marker of skeletal fragility in white men. J Bone Miner Res 19:1933–1944

    Article  PubMed  Google Scholar 

  8. Schousboe JT, Fink HA, Taylor BC, Stone KL, Hillier TA, Nevitt MC, Ensrud KE (2005) Association between self-reported prior wrist fractures and risk of subsequent hip and radiographic vertebral fractures in older women: a prospective study. J Bone Miner Res 20:100–106

    Article  PubMed  Google Scholar 

  9. Blake GM, Fogelman I (2010) An update on dual-energy x-ray absorptiometry. Semin Nucl Med 40:62–73

    Article  PubMed  Google Scholar 

  10. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  11. NIH Consensus Panel (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  12. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:S13–S18

    Article  PubMed  Google Scholar 

  13. Bonel HM, Lochmuller EM, Well H, Kuhn V, Hudelmaier M, Reiser M, Eckstein F (2004) Multislice computed tomography of the distal radius metaphysis: relationship of cortical bone structure with gender, age, osteoporotic status, and mechanical competence. J Clin Densitom 7:169–182

    Article  PubMed  Google Scholar 

  14. Guglielmi G, de Terlizzi F (2009) Quantitative ultrasond in the assessment of osteoporosis. Eur J Radiol 71:425–431

    Article  PubMed  Google Scholar 

  15. Krug R, Burghardt AJ, Majumdar S, Link TM (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48:601–621

    Article  PubMed  Google Scholar 

  16. Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381

    Article  CAS  PubMed  Google Scholar 

  17. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    Article  PubMed  Google Scholar 

  18. Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14:345–352

    Article  PubMed  Google Scholar 

  19. Wu C, Hans D, He Y, Fan B, Njeh CF, Augat P, Richards J, Genant HK (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26:529–533

    Article  CAS  PubMed  Google Scholar 

  20. Baum T, Dutsch Y, Muller D, Monetti R, Sidorenko I, Rath C, Rummeny EJ, Link TM, Bauer JS (2012) Reproducibility of trabecular bone structure measurements of the distal radius at 1.5 and 3.0 T magnetic resonance imaging. J Comput Assist Tomogr 36:623–626

    Article  PubMed  Google Scholar 

  21. Issever AS, Link TM, Newitt D, Munoz T, Majumdar S (2010) Interrelationships between 3-T-MRI-derived cortical and trabecular bone structure parameters and quantitative-computed-tomography-derivedbone mineral density. Magn Reson Imaging 28:1299–1305

    Article  PubMed  Google Scholar 

  22. Krug R, Carballido-Gamio J, Burghardt AJ, Kazakia G, Hyun BH, Jobke B, Banerjee S, Huber M, Link TM, Majumdar S (2008) Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo. Osteoporos Int 19:653–661

    Article  CAS  PubMed  Google Scholar 

  23. Lam SC, Wald MJ, Rajapakse CS, Liu Y, Saha PK, Wehrli FW (2011) Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone 49:895–903

    Article  PubMed  Google Scholar 

  24. Hudelmaier M, Kollstedt A, Lochmuller EM, Kuhn V, Eckstein F, Link TM (2005) Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int 16:1124–1133

    Article  PubMed  Google Scholar 

  25. Mueller D, Link TM, Monetti R, Bauer J, Boehm H, Seifert-Klauss V, Rummeny EJ, Morfill GE, Raeth C (2006) The 3D-based scaling index algorithm: a new structure measure to analyze trabecular bone architecture in high-resolution MR images in vivo. Osteoporos Int 17:1483–1493

    Article  CAS  PubMed  Google Scholar 

  26. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  CAS  PubMed  Google Scholar 

  27. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  28. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227:708–717

    Article  PubMed  Google Scholar 

  29. Cortet B, Dubois P, Boutry N, Bourel P, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 9:410–419

    Article  CAS  PubMed  Google Scholar 

  30. Baum T, Carballido-Gamio J, Huber MB, Muller D, Monetti R, Rath C, Eckstein F, Lochmuller EM, Majumdar S, Rummeny EJ, Link TM, Bauer JS (2010) Automated 3D trabecular bone structure analysis of the proximal femur–prediction of biomechanical strength by CT and DXA. Osteoporos Int 21:1553–1564

    Article  CAS  PubMed  Google Scholar 

  31. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270

    Article  CAS  PubMed  Google Scholar 

  32. Ladinsky GA, Vasilic B, Popescu AM, Wald M, Zemel BS, Snyder PJ, Loh L, Song HK, Saha PK, Wright AC, Wehrli FW (2008) Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res 23:64–74

    Article  PubMed  Google Scholar 

  33. Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408

    Article  PubMed  Google Scholar 

  34. Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M, Majumdar S, Lochmuller EM, Eckstein F (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497

    Article  PubMed  Google Scholar 

  35. Chesnut CH III, Majumdar S, Newitt DC, Shields A, Van PJ, Laschansky E, Azria M, Kriegman A, Olson M, Eriksen EF, Mindeholm L (2005) Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res 20:1548–1561

    Article  CAS  PubMed  Google Scholar 

  36. Greenspan SL, Perera S, Recker R, Wagner JM, Greeley P, Gomberg BR, Seaman P, Kleerekoper M (2010) Changes in trabecular microarchitecture in postmenopausal women on bisphosphonate therapy. Bone 46:1006–1010

    Article  CAS  PubMed  Google Scholar 

  37. Wehrli FW, Ladinsky GA, Jones C, Benito M, Magland J, Vasilic B, Popescu AM, Zemel B, Cucchiara AJ, Wright AC, Song HK, Saha PK, Peachey H, Snyder PJ (2008) In vivo magnetic resonance detects rapid remodeling changes in the topology of the trabecular bone network after menopause and the protective effect of estradiol. J Bone Miner Res 23:730–740

    Article  PubMed  Google Scholar 

  38. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Article  CAS  PubMed  Google Scholar 

  39. Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35:ii27–ii31

    Google Scholar 

  40. Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J (2012) Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 27:848–857

    Article  PubMed  Google Scholar 

  41. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17

    Article  PubMed  Google Scholar 

  42. Newitt DC, Majumdar S, van RB, von IG, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

  43. Mueller TL, Christen D, Sandercott S, Boyd SK, van RB, Eckstein F, Lochmuller EM, Muller R, van Lenthe GH (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238

  44. Lochmuller EM, Krefting N, Burklein D, Eckstein F (2001) Effect of fixation, soft-tissues, and scan projection on bone mineral measurements with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 68:140–145

    Article  CAS  PubMed  Google Scholar 

  45. Lochmuller EM, Matsuura M, Bauer J, Hitzl W, Link TM, Muller R, Eckstein F (2008) Site-specific deterioration of trabecular bone architecture in men and women with advancing age. J Bone Miner Res 23:1964–1973

    Article  PubMed  Google Scholar 

  46. Dontas IA, Yiannakopoulos CK (2007) Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact 7:268–272

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG LO 730/3-1 and DFG BA 4085/1-2).

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Baum.

About this article

Cite this article

Baum, T., Kutscher, M., Müller, D. et al. Cortical and trabecular bone structure analysis at the distal radius—prediction of biomechanical strength by DXA and MRI. J Bone Miner Metab 31, 212–221 (2013). https://doi.org/10.1007/s00774-012-0407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-012-0407-8

Keywords

Navigation