Skip to main content
Log in

Prediction of cross-shore sandbar volumes using neural network approach

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Correct estimation of bar volumes, wave height, wave period and median sediment diameter is crucial for the designing of coastal structures and water quality problem. In this study, bar volumes caused by cross-shore sediment transport were investigated using a physical model and obtained 64 experimental data considering the wave steepness (H 0/L 0) and period (T), the bed slope (m) and the sediment diameter (d 50). Artificial neural network (ANN) and multi-linear regression (MLR) are used for predicting the bar volumes. A multi layer perceptron is used as the ANN structure. The results show that the ANN model estimates are much closer to the experimental data than the MLR model estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saville T Jr. (1957) Scale effects in two dimensional beach information due to waves. Proc. of the 14th Coastal Eng. Conf. Copenhagen Denmark, pp 920–938

  2. Dean RG (1973) Heuristics models of sand transport in the surf zone. Proc. Conf. Eng. 1973. Sydney, pp 208–214

  3. Noda EK (1972) Equilibrium beach profile scale model relationships. J Waterway Harbs Coast Eng Div ASCE 98(4):511–528

    Google Scholar 

  4. Gourlay RM (1980) Beaches: profiles, processes and permeability, Proc. of the 17th Int. Conf. on Coastal Eng., pp 1321–1339

  5. Sawaragi T, Deguchi I (1980) On-offshore sediment transport rate in the surf zone, Proc. of the 17th Int. Conf. on Coastal Eng., pp 1194–1214

  6. Johnson JW (1949) Scale effect in hydraulic model involving wave motion. Trans AGU 30:517–525

    Article  Google Scholar 

  7. Iwagaki Y, Noda H (1962) Laboratory study of scale effects in two dimensional beach processes. Proc. 12th Conf. Coastal Eng., pp 194–210

  8. Nayak IV (1970) Equilibrium profiles of model beaches. Proc. of the 17th Int. Conf. on Coastal Eng., pp 1321–1340

  9. Hattori M, Kawamata R (1980) Onshore–offshore transport and beach profile change. Proc. of the 17th Int. Conf. on Coastal Eng., pp 1175–1193

  10. Sunamura T, Horikawa K (1974) Two-dimensional beach transformation due to waves. Proc. of the 14th Int. Conf. on Coastal Eng., pp 920–938

  11. Larson H, Kraus NC (1989) Numerical model for simulating storminduced beach change (SBEACH), Report 1, Empirical Foundation and Model Development, Technical Report, CERC-89-9. US Army

  12. Silvester R, Hsu JRC (1997) Coastal stabilization. Advanced Series on Ocean Engineering, vol. 14. World Scientific Publishing, Singapore

  13. Watanabe A, Riho Y, Horikawa K (1980) Beach profiles and on–offshore sediment transport. Proc. of the 17th Int. Conf. on Coastal Eng., pp 1106–1121

  14. Larson M (1996) Model of beach profile change under random waves. J Waterway Port Coast Ocean Eng 122(4):172–181

  15. Hsu TW (1998) Geometric characteristics of storm–beach profiles caused by inclined waves. Ocean Eng 25:69–84

    Article  Google Scholar 

  16. Günaydın K, Kapdaşlı MS (2003) Characteristics of coastal erosion geometry under regular and irregular waves. Ocean Eng 30:1579–1593

    Article  Google Scholar 

  17. Kömürcü Mİ, Özölçer İH, Yüksek Ö, Karasu S (2007) Determination of bar parameters caused by cross shore sediment movement. Ocean Eng 34:685–695

    Article  Google Scholar 

  18. Rozynski G (2003) Data-driven modeling of multiple longshore bars and their interactions. Coast Eng 48:151–170

    Article  Google Scholar 

  19. Özölçer İ (2008) An experimental study on geometric characteristics of beach erosion profiles. Ocean Eng 35:17–27

    Article  Google Scholar 

  20. Demirci M, Aköz MS (2012) An investigation on the formation of submerged bar under surges in sandy coastal region. China Ocean Eng 26(3):535–546

    Article  Google Scholar 

  21. Demirci M, Aköz MS (2013) Investigation of bar parameters occurred by cross-shore sediment transport. Int J Naval Archit Ocean Eng 5(2):277–286

    Article  Google Scholar 

  22. Demirci M, Aköz MS, Üneş F (2014) Experimental investigation of cross-shore sandbar volumes. J Coast Conserv 18:11–16

    Article  Google Scholar 

  23. Altunkaynak A, Ozger M (2004) Temporal significant wave height estimation from wind speed by Perceptron Kalman filtering. Ocean Eng 31:1245–1255

    Article  Google Scholar 

  24. Cox DT, Tissot P, Michaud P (2002) Water level observations and short-term predictions including meteorological events for entrance of Galveston bay, Texas. J Waterway Port Coast Ocean Eng 128:21–29

    Article  Google Scholar 

  25. Lee TL, Jeng DS (2002) Application of artificial neural networks in tide forecasting. Ocean Eng 29:1003–1022

    Article  Google Scholar 

  26. Makarynskyy O, Makarynska D, Rusu E (2005) Filling gaps in wave records with artificial neural networks. Maritime transportation and exploitation of ocean and coastal resources, pp 1085–1091

  27. Yagcı O, Mercan DE, Cıgızoglu HK, Kabdasli MS (2005) Artificial intelligence methods in breakwater damage ratio estimation. Ocean Eng 32:2088–2106

    Article  Google Scholar 

  28. Rusu E (2010) Modelling of wave-current interactions at the mouths of the Danube. J Mar Sci Technol 15(2):143–159

    Article  MathSciNet  Google Scholar 

  29. Akpınar A, Özger M, Kömürcü MI (2014) Prediction of wave parameters by using fuzzy inference system and the parametric models along the south coasts of the Black Sea. J Mar Sci Technol 19(1):1–14

    Article  Google Scholar 

  30. Kömürcü MI, Tutkun N, Özölçer İH, Akpınar A (2008) Estimation of the beach bar parameters using the genetic algorithms. Appl Math Comput 195(1):49–60

    Article  MATH  MathSciNet  Google Scholar 

  31. Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50(4):683–696

    Google Scholar 

  32. Kisi O, Shiri J (2012) River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Comput Geosci 43:73–82

    Article  Google Scholar 

  33. Demirci M, Baltacı A (2013) Prediction of suspended sediment in river using fuzzy logic and multilinear regression approaches. Neural Comput Appl 23(Suppl 1):145–151

    Article  Google Scholar 

  34. Üneş F (2010) Prediction of density flow plunging depth in dam reservoirs: an artificial neural network approach. Clean Soil Air Water 38(3):296–308

    Article  Google Scholar 

  35. More A, Deo MC (2003) Forecasting wind with neural networks. Mar Struct 16(1):35–49

    Article  Google Scholar 

  36. Üneş F (2010) Dam reservoir level modeling by neural network approach: a case study. Neural Netw World 4(10):461–474

    Google Scholar 

  37. Demirci M (2006) Experimental investigation of cross-shore profile changes. Ph.D. Thesis. CU Natural and Applied Sciences Institute, Adana (in Turkish)

  38. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan College Publishing Company, New York

    MATH  Google Scholar 

  39. Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 6:861–867

    Google Scholar 

  40. El-Bakyr MY (2003) Feed forward neural networks modelling for K–P interactions. Chaos Solitons Fractals 18(5):995–1000

    Article  Google Scholar 

  41. Cigizoglu HK, Kisi O (2005) Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36(1):49–64

    Google Scholar 

  42. Brikundavyi S, Labib R, Trung HT, Rousselle J (2002) Performance of neural networks in daily streamflow forecasting. J Hydrol Eng 7(5):392–398

    Article  Google Scholar 

  43. Chibanga R, Berlamont J, Vandewalle J (2003) Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin. Hydrol Sci J 48(3):363–379

    Article  Google Scholar 

  44. Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv Water Resour 27:185–195

    Article  Google Scholar 

  45. Kisi O (2004) River flow modeling using artificial neural networks. J Hydrol Eng ASCE 9(1):60–63

    Article  Google Scholar 

  46. Markus M, Salas JD, Shin HK (1995) Predicting stream flows based on neural networks. Proc. 1st Int. Conf. on Water Resour. Eng., ASCE, pp 1641–1646

  47. Cybenco G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Systems 2:303–314

    Article  MathSciNet  Google Scholar 

  48. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Demirci.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirci, M., Üneş, F. & Aköz, M.S. Prediction of cross-shore sandbar volumes using neural network approach. J Mar Sci Technol 20, 171–179 (2015). https://doi.org/10.1007/s00773-014-0279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-014-0279-9

Keywords

Navigation