Skip to main content
Log in

Validation of the quantification of natural radionuclides in raw materials and by-products using gamma-ray spectrometry

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

The validation of a method for the indirect quantification for 238U, 226Ra, and 232Th activity and the direct quantification for 40K activity using gamma-ray spectrometry was performed in view of consistency, reliability, and accuracy of the results. The gas tightness of Al containers used to confine the radon gas was verified from the establishment of the secular equilibrium between 226Ra and its indicator. To evaluate validation parameters such as linearity, range, and accuracy, it was important to verify the equilibrium state of the reference materials (RM) for U and Th, because the ingrowth of progenies in the uranium decay series can affect the quantification of 226Ra activity even if based on a certified reference material (CRM), while the ingrowth of 228Ra from the thorium decay series should be secured in order to use 228Ac as an indicator of 232Th. In addition, the ruggedness of the method regarding different materials was checked using two kinds of CRM, namely bauxite as an example of a raw material and coal fly ash as a by-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al-Masri MS, Shakhashiro A, Amin Y (2004) Method validation procedures for environmental radiochemical measurement at AECS. Accred Qual Assur 9:361–368

    Article  CAS  Google Scholar 

  2. Al-Masri MS, Amin Y (2005) Use of Eurachem guide on method validation for determination of uranium in environmental samples. Accred Qual Assur 10:98–106

    Article  CAS  Google Scholar 

  3. Bandong BB, Kreek SA, Bazn JM, Torretto PC, Dixon JA, Edwards WL, Guthrie EB, Ruth MA, Zaka FA, Hall HL (2005) Validation of a gamma-spectrometric method for the measurement of 226,228Ra in environmental media relevant to the offshore oil and gas industry. J Radioanal Nucl Chem 264(2):429–435

    Article  Google Scholar 

  4. Chung KH, Choi GS, Lee W, Chho YH, Lee CW (2006) Implementation of ISO/IEC 17025 standard in a nuclear analytical laboratory: the KAERI experience. Accred Qual Assur 10:603–605

    Article  CAS  Google Scholar 

  5. ISO IEC17025:2005 (2005) General requirements for the competence of testing and calibration laboratories. International Organization for Standardization, Geneva

    Google Scholar 

  6. IAEA (2011) ALMERA proficiency test: determination of natural and artificial radionuclides in soil and water, IAEA analytical quality in nuclear applications series, No. 32, IAEA/AQ/32 (www-pub.iaea.org/MTCD/publications/PDF/IAEA-AQ-32_web.pdf)

  7. Canberra (2006) Genie2000 Operations Manual, Ver. 3.1

  8. Kolotov VP, Atrashkvich VV, Gelsema SJ (1996) Estimation of true coincidence corrections for voluminous sources. J Radioanal Nucl Chem 210(1):183–196

    Article  CAS  Google Scholar 

  9. ORTEC (2003) GammaVision-32 software user’s manual, Ver. 6

  10. Blaauw M (1993) The use of sources emitting coincident γ-rays for determination of absolute efficiency curves of highly efficient Ge detectors. Nucl Instr Meth A 332:493–500

    Article  CAS  Google Scholar 

  11. Gunnink R (1990) New method for calibrating a Ge detector by using only zero to four efficiency points. Nucl Instr Meth A 299:372–376

    Article  Google Scholar 

  12. Ji YY, Chung KH, Lim JM, Kim CJ, Jan M, Kang MJ, Park ST (2015) Analytical evaluation of natural radionuclides and their radioactive equilibrium in raw materials and by-products. Appl Radiat Isot 97:1–7

    Article  CAS  Google Scholar 

  13. BIPM (2006) Table of Radionuclides, Bureau International des Poids et Mesures, Monographie BIPM-5

  14. De Corte F, Umans H, Vandenberghe D, De Wispelaere A, Van den Haute P (2005) Direct gamma-spectrometric measurement of the 226Ra 186.2 keV line for detecting 238U/226Ra disequilibrium in determining the environmental dose rate for the luminescence dating of sediments. Appl Radiat Isot 63:589–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from “Establishment of Technical Basis for Implementation on Safety Management for Radiation in the Natural Environment” carried out by Korea Institute of Nuclear Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Yong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, YY., Kim, CJ., Lim, JM. et al. Validation of the quantification of natural radionuclides in raw materials and by-products using gamma-ray spectrometry. Accred Qual Assur 21, 403–408 (2016). https://doi.org/10.1007/s00769-016-1238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-016-1238-4

Keywords

Navigation