Skip to main content

Advertisement

Log in

Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 / mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 / to Nos2 / mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 / and Arg2 / ;Nos2 / mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 / mice demonstrated enhanced M1 macrophage activation, Nos2 / and Arg2 / ;Nos2 / mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 /, but not Nos2 / or Arg2 / ;Nos2 / mice. Gastric tissues from infected Arg2 / mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N 1-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMD1:

Adenosylmethionine decarboxylase 1

ARG1:

Arginase 1; arginase, type I

ARG2:

Arginase 2; arginase, type II

CCL:

C–C chemokine ligand

CD:

Cluster of differentiation

CHIA1:

Chitinase, acidic 1

CXCL:

C–X–C chemokine ligand

FPL:

French-pressed lysate

IFN-γ:

Interferon gamma

IL:

Interleukin

M-CSF:

Macrophage colony stimulating factor

MOI:

Multiplicity of infection

NO:

Nitric oxide

NOS2:

Nitric oxide synthase 2; inducible nitric oxide synthase

ODC:

Ornithine decarboxylase

PMSS1:

Pre-mouse Sydney Strain 1

RT-PCR:

Real-time polymerase chain reaction

RETNLA:

Resistin like molecule alpha

SAT1:

Spermidine/spermine N 1-acetyltransferase 1

SMOX:

Spermine oxidase

SS1:

Sydney Strain 1

TGF:

Transforming growth factor

Th:

T helper

TNF:

Tumor necrosis factor

TNFSF14:

Tumor necrosis factor superfamily member 14

References

  • Algood HMS, Lin PL, Yankura D, Jones A, Chan J, Flynn JL (2004) Tnf influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol 172(11):6846–6857

    Article  CAS  PubMed  Google Scholar 

  • Anderson CF, Mosser DM (2002) A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol 72(1):101–106

    CAS  PubMed  Google Scholar 

  • Asim M, Chaturvedi R, Hoge S, Lewis ND, Singh K, Barry DP, Algood HS, de Sablet T, Gobert AP, Wilson KT (2010) Helicobacter pylori induces erk-dependent formation of a phospho-c-fos c-jun activator protein-1 complex that causes apoptosis in macrophages. J Biol Chem 285(26):20343–20357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal V, Ochoa JB (2003) Arginine availability, arginase, and the immune response. Curr Opin Clin Nutr Metab Care 6(2):223–228

    Article  CAS  PubMed  Google Scholar 

  • Barry DP, Asim M, Scull BP, Piazuelo MB, de Sablet T, Lewis ND, Coburn LA, Singh K, Ellies LG, Gobert AP, Chaturvedi R, Wilson KT (2011) Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection. PLoS One 6(12):e29046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoit M, Desnues B, Mege J-L (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Bonequi P, Meneses-Gonzalez F, Correa P, Rabkin CS, Camargo MC (2013) Risk factors for gastric cancer in latin america: a meta-analysis. Cancer Causes Control 24(2):217–231

    Article  PubMed  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5(8):641–654

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Cheng Y, Asim M, Bussière FI, Xu H, Gobert AP, Hacker A, Casero RA, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279(38):40161–40173

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Asim M, Lewis ND, Algood HMS, Cover TL, Kim PY, Wilson KT (2007) l-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect Immun 75(9):4305–4315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, de Sablet T, Piazuelo MB, Sarvaria AR, Cheng Y, Closs EI, Casero RA Jr, Gobert AP, Wilson KT (2010) Polyamines impair immunity to Helicobacter pylori by inhibiting l-arginine uptake required for nitric oxide production. Gastroenterology 139(5):1686–1698 (e1686)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi R, de Sablet T, Coburn LA, Gobert AP, Wilson KT (2012) Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 42(2–3):627–640

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Asim M, Barry DP, Frye JW, Casero RA Jr, Wilson KT (2014) Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine. Amino Acids 46(3):531–542

    Article  CAS  PubMed  Google Scholar 

  • Coburn LA, Horst SN, Chaturvedi R, Brown CT, Allaman MM, Scull BP, Singh K, Piazuelo MB, Chitnavis MV, Hodges ME, Rosen MJ, Williams CS, Slaughter JC, Beaulieu DB, Schwartz DA, Wilson KT (2013) High-throughput multi-analyte luminex profiling implicates eotaxin-1 in ulcerative colitis. PLoS One 8(12):e82300

    Article  PubMed  PubMed Central  Google Scholar 

  • Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136(6):1863–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in Globocan 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fleming BD, Mosser DM (2011) Regulatory macrophages: setting the threshold for therapy. Eur J Immunol 41(9):2498–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert AP, McGee DJ, Akhtar M, Mendz GL, Newton JC, Cheng Y, Mobley HL, Wilson KT (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc Natl Acad Sci USA 98(24):13844–13849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert AP, Cheng Y, Wang J-Y, Boucher J-L, Iyer RK, Cederbaum SD, Casero RA, Newton JC, Wilson KT (2002a) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168(9):4692–4700

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, Mersey BD, Cheng Y, Blumberg DR, Newton JC, Wilson KT (2002b) Cutting edge: urease release by Helicobacter pylori stimulates macrophage inducible nitric oxide synthase. J Immunol 168(12):6002–6006

    Article  CAS  PubMed  Google Scholar 

  • Gobert AP, Asim M, Piazuelo MB, Verriere T, Scull BP, de Sablet T, Glumac A, Lewis ND, Correa P, Peek RM, Chaturvedi R, Wilson KT (2011) Disruption of nitric oxide signaling by Helicobacter pylori results in enhanced inflammation by inhibition of heme oxygenase-1. J Immunol 187(10):5370–5379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM Jr, Chaturvedi R, Wilson KT (2014) Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J Immunol 193(6):3013–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogoi M, Datey A, Wilson KT, Chakravortty D (2015) Dual role of arginine metabolism in establishing pathogenesis. Curr Opin Microbiol 29:43–48

    Article  PubMed  Google Scholar 

  • Goto T, Haruma K, Kitadai Y, Ito M, Yoshihara M, Sumii K, Hayakawa N, Kajiyama G (1999) Enhanced expression of inducible nitric oxide synthase and nitrotyrosine in gastric mucosa of gastric cancer patients. Clin Cancer Res 5(6):1411–1415

    CAS  PubMed  Google Scholar 

  • Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT (2013) Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 4(6):475–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardbower DM, Peek RM Jr, Wilson KT (2014) At the bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 96(2):201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411

    Article  CAS  PubMed  Google Scholar 

  • Lewis ND, Asim M, Barry DP, Singh K, de Sablet T, Boucher JL, Gobert AP, Chaturvedi R, Wilson KT (2010) Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. J Immunol 184(5):2572–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT (2011) Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. J Immunol 186(6):3632–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannick EE, Bravo LE, Zarama G, Realpe JL, Zhang XJ, Ruiz B, Fontham ET, Mera R, Miller MJ, Correa P (1996) Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effect of antibiotics and antioxidants. Cancer Res 56(14):3238–3243

    CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura A, Stemmermann G, Chyou P, Kato I, Perez-Perez G, Blaser M (1991) Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325:1132–1136

    Article  CAS  PubMed  Google Scholar 

  • Ostuni R, Kratochvill F, Murray PJ, Natoli G (2015) Macrophages and cancer: from mechanisms to therapeutic implications. Trends Immunol 36(4):229–239

    Article  CAS  PubMed  Google Scholar 

  • Pander J, Heusinkveld M, van der Straaten T, Jordanova ES, Baak-Pablo R, Gelderblom H, Morreau H, van der Burg SH, Guchelaar HJ, van Hall T (2011) Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin Cancer Res 17(17):5668–5673

    Article  CAS  PubMed  Google Scholar 

  • Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325(16):1127–1131

    Article  CAS  PubMed  Google Scholar 

  • Peek RM, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Peek RM, Fiske C, Wilson KT (2010) Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev 90(3):831–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson K, Argent RH, Atherton JC (2007) The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 21(2):237–259

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi AA, Miura S, Takeuchi T, Hokari R, Mizumori M, Yoshida H, Higuchi H, Mori M, Kimura H, Suzuki H, Ishii H (1999) Increased expression of inducible nitric oxide synthase and peroxynitrite in Helicobacter pylori gastric ulcer. Free Radical Biol Med 27(7–8):781–789

    Article  CAS  Google Scholar 

  • Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC (2007) Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol 120(6):1279–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro KB, Hotchkiss JH (1996) Induction of nitric oxide synthesis in murine macrophages by Helicobacter pylori. Cancer Lett 102(1, A2):49–56

    Article  CAS  PubMed  Google Scholar 

  • Sheh A, Ge Z, Parry NM, Muthupalani S, Rager JE, Raczynski AR, Mobley MW, McCabe AF, Fry RC, Wang TC, Fox JG (2011) 17-beta-estradiol and tamoxifen prevent gastric cancer by modulating leukocyte recruitment and oncogenic pathways in Helicobacter pylori-infected ins-gas male mice. Cancer Prev Res 4(9):1426–1435

    Article  CAS  Google Scholar 

  • Sibony M, Jones NL (2012) Recent advances in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 28(1):30–35

    Article  PubMed  Google Scholar 

  • Strauss-Ayali D, Conrad SM, Mosser DM (2007) Monocyte subpopulations and their differentiation patterns during infection. J Leukoc Biol 82(2):244–252

    Article  CAS  PubMed  Google Scholar 

  • Van den Bossche J, Lamers WH, Koehler ES, Geuns JM, Alhonen L, Uimari A, Pirnes-Karhu S, Van Overmeire E, Morias Y, Brys L, Vereecke L, De Baetselier P, Van Ginderachter JA (2012) Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J Leukoc Biol 91(5):685–699

    Article  PubMed  Google Scholar 

  • Weischenfeldt J, Porse B (2008) Bone marrow-derived macrophages (BMM): isolation and applications. Cold Spring Harb Prot 12:1–6

    Google Scholar 

  • Wilson KT, Crabtree JE (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133(1):288–308

    Article  CAS  PubMed  Google Scholar 

  • Wilson KT, Ramanujam KS, Mobley HL, Musselman RF, James SP, Meltzer SJ (1996) Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111(6):1524–1533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Alain P. Gobert (Vanderbilt University) for intellectual input and for his review of the manuscript. We thank Daniel P. Barry (Vanderbilt University) for his assistance with the breeding and maintenance of the mouse colonies utilized in this study. We thank Margaret Allaman (Vanderbilt University) for her assistance with the Luminex assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith T. Wilson.

Ethics declarations

Funding

This work was funded by NIH Grants R01DK053620, R01AT004821, R01CA190612, P01CA116087, and P01CA028842 (K.T.W.), Merit Review Grant I01BX001453 from the United States Department of Veterans Affairs Biomedical Laboratory R&D (BLRD) Service (K.T.W.), the Vanderbilt Digestive Disease Research Center, supported by NIH Grant P30DK058404, the Thomas F. Frist Sr. Endowment (K.T.W.), and the Vanderbilt Center for Mucosal Inflammation and Cancer (K.T.W.). D.M.H. was supported by NIH Grants T32GM008554 and F31DK10715.

Conflict of interest

The authors declare that no conflict of interest exists.

Additional information

Handling Editor: E. Agostinelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardbower, D.M., Asim, M., Murray-Stewart, T. et al. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 48, 2375–2388 (2016). https://doi.org/10.1007/s00726-016-2231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2231-2

Keywords

Navigation