Skip to main content
Log in

Natural polyamines inhibit the migration of preosteoclasts by attenuating Ca2+-PYK2-Src-NFATc1 signaling pathways

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Natural polyamines have numerous biological activities. Several studies have reported their beneficial role in bone metabolism, but their mode of action is not fully understood. Bone diseases such as osteoporosis, which is characterized by impaired bone structure and low bone mass, are caused by an increased number of osteoclasts and/or overactivation of osteoclastogenesis. Osteoclast differentiation is a multi-complex procedure involving the following sequential steps: differentiation–migration–fusion–resorption. In this study, we found that putrescine, spermidine or spermine inhibited the RANKL-mediated migration of preosteoclasts. Furthermore, the RANKL-mediated activation of the Src-PYK2 signaling axis and of transcription factors such as NF-κB and NFATc1 was prevented by each polyamine. Anti-osteoclastogenic and anti-migration activities of polyamines were confirmed by evaluating their potential to downregulate the mRNA expression levels of osteoclastogenesis-related genes such as OSCAR, TRAP, cathepsin K and c-Src, and genes related to fusion and/or migration of preosteoclasts. Moreover, ATP-mediated elevation of cytosolic free Ca2+ concentration ([Ca2+]i) was strongly inhibited by each polyamine, indicating the involvement of [Ca2+]i in the anti-fusion activities of polyamines. In conclusion, polyamines could exhibit anti-osteoclastogenic activity by inhibiting the migration of preosteoclasts via the Ca2+-PYK2-Src-NFATc1 signaling axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Boudot C, Saidak Z, Boulanouar AK, Petit L, Gouilleux F, Massy Z, Brazier M, Mentaverri R, Kamel S (2010) Implication of the calcium sensing receptor and the phosphoinositide 3-kinase/Akt pathway in the extracellular calcium-mediated migration of RAW 264.7 osteoclast precursor cells. Bone 46(5):1416–1423. doi:10.1016/j.bone.2010.01.383

    Article  PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. doi:10.1038/nature01658

    Article  PubMed  CAS  Google Scholar 

  • Brazier H, Pawlak G, Vives V, Blangy A (2009) The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 41(6):1391–1401. doi:10.1016/j.biocel.2008.12.007

    Article  PubMed  CAS  Google Scholar 

  • Broadhead ML, Clark JC, Dass CR, Choong PF, Myers DE (2011) Therapeutic targeting of osteoclast function and pathways. Expert Opin Ther Targets 15(2):169–181. doi:10.1517/14728222.2011.546351

    Article  PubMed  Google Scholar 

  • Choi SW, Moon SH, Yang HJ, Kwon DY, Son YJ, Yu R, Kim YS, Kim SI, Chae EJ, Park SJ, Kim SH (2013) Antiresorptive activity of bacillus-fermented antler extracts: inhibition of osteoclast differentiation. Evid Based Complementary Alternat Med 2013:748687. doi:10.1155/2013/748687

    Google Scholar 

  • Choi SW, Son YJ, Yun JM, Kim SH (2012) Fisetin inhibits osteoclast differentiation via downregulation of p38 and c-Fos-NFATc1 signaling pathways. Evid Based Complementary Alternat Med 2012:810563. doi:10.1155/2012/810563

    Google Scholar 

  • Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest 102(5):881–892. doi:10.1172/jci3212

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178(5):1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Iezaki T, Hinoi E, Yamamoto T, Ishiura R, Ogawa S, Yoneda Y (2012) Amelioration by the natural polyamine spermine of cartilage and bone destruction in rats with collagen-induced arthritis. J Pharmacol Sci 119(1):107–111

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51. doi:10.1016/j.biocel.2009.07.009

    Article  PubMed  CAS  Google Scholar 

  • Kikuta J, Ishii M (2013) Osteoclast migration, differentiation and function: novel therapeutic targets for rheumatic diseases. Rheumatology (Oxford) 52(2):226–234. doi:10.1093/rheumatology/kes259

    Article  CAS  Google Scholar 

  • Kim K, Lee SH, Ha Kim J, Choi Y, Kim N (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol 22(1):176–185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim SH, Moon SH (2013) Osteoclast differentiation inhibitors: a patent review (2008–2012). Expert Opin Ther Pat 23(12):1591–1610. doi:10.1517/13543776.2013.842556

    Article  PubMed  CAS  Google Scholar 

  • Kimachi K, Kajiya H, Nakayama S, Ikebe T, Okabe K (2011) Zoledronic acid inhibits RANK expression and migration of osteoclast precursors during osteoclastogenesis. Naunyn Schmiedeberg Arch Pharmacol 383(3):297–308. doi:10.1007/s00210-010-0596-4

    Article  CAS  Google Scholar 

  • Lakkakorpi PT, Bett AJ, Lipfert L, Rodan GA, le Duong T (2003) PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem 278(13):11502–11512. doi:10.1074/jbc.M206579200

    Article  PubMed  CAS  Google Scholar 

  • Lefevre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32(5):694–712. doi:10.1210/er.2011-0012

    Article  PubMed  CAS  Google Scholar 

  • Li L, Rao JN, Guo X, Liu L, Santora R, Bass BL, Wang JY (2001) Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol 281(3):C941–C953

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren O, Fredholm BB, Lerner UH (1991) On the role of polyamines in bone resorption induced by parathyroid hormone. Acta Physiol Scand 142(2):267–273. doi:10.1111/j.1748-1716.1991.tb09156.x

    Article  PubMed  CAS  Google Scholar 

  • Matsui A, Okigaki M, Amano K, Adachi Y, Jin D, Takai S, Yamashita T, Kawashima S, Kurihara T, Miyazaki M, Tateishi K, Matsunaga S, Katsume A, Honshou S, Takahashi T, Matoba S, Kusaba T, Tatsumi T, Matsubara H (2007) Central role of calcium-dependent tyrosine kinase PYK2 in endothelial nitric oxide synthase-mediated angiogenic response and vascular function. Circulation 116(9):1041–1051. doi:10.1161/circulationaha.106.645416

    Article  PubMed  CAS  Google Scholar 

  • Munugalavadla V, Vemula S, Sims EC, Krishnan S, Chen S, Yan J, Li H, Niziolek PJ, Takemoto C, Robling AG, Yang FC, Kapur R (2008) The p85alpha subunit of class IA phosphatidylinositol 3-kinase regulates the expression of multiple genes involved in osteoclast maturation and migration. Mol Cell Biol 28(23):7182–7198. doi:10.1128/mcb.00920-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura I, Pilkington MF, Lakkakorpi PT, Lipfert L, Sims SM, Dixon SJ, Rodan GA, Duong LT (1999) Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci 112(Pt 22):3985–3993

    PubMed  CAS  Google Scholar 

  • Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231(1):241–256. doi:10.1111/j.1600-065X.2009.00821.x

    Article  PubMed  CAS  Google Scholar 

  • Novack DV (2011) Unique personalities within the NF-kappaB family: distinct functions for p65 and RelB in the osteoclast. Adv Exp Med Biol 691:163–167. doi:10.1007/978-1-4419-6612-4_17

    Article  PubMed  CAS  Google Scholar 

  • Owens J, Chambers TJ (1993) Macrophage colony-stimulating factor (M-CSF) induces migration in osteoclasts in vitro. Biochem Biophys Res Commun 195(3):1401–1407. doi:10.1006/bbrc.1993.2199

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Song I, Kim JH, Kim K, Jin HM, Youn BU, Kim N (2009) Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett 583(14):2435–2440. doi:10.1016/j.febslet.2009.06.047

    Article  PubMed  CAS  Google Scholar 

  • Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64(4):693–702

    Article  PubMed  CAS  Google Scholar 

  • Stern PH, Lucas RC, Seidenfeld J (1991) Alpha-difluoromethylornithine inhibits bone resorption in vitro without decreasing beta-glucuronidase release. Mol Pharmacol 39(4):557–562

    PubMed  CAS  Google Scholar 

  • Takami M, Woo JT, Nagai K (1999) Osteoblastic cells induce fusion and activation of osteoclasts through a mechanism independent of macrophage-colony-stimulating factor production. Cell Tissue Res 298(2):327–334

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7(4):292–304. doi:10.1038/nri2062

    Article  PubMed  CAS  Google Scholar 

  • Vaira S, Alhawagri M, Anwisye I, Kitaura H, Faccio R, Novack DV (2008) RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Investig 118(6):2088–2097. doi:10.1172/jci33392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wheal BD, Beach RJ, Tanabe N, Dixon SJ, Sims SM (2014) Subcellular elevation of cytosolic free calcium is required for osteoclast migration. J Bone Miner Res 29(3):725–734. doi:10.1002/jbmr.2068

    Article  PubMed  CAS  Google Scholar 

  • Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Hinoi E, Fujita H, Iezaki T, Takahata Y, Takamori M, Yoneda Y (2012) The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. Br J Pharmacol 166(3):1084–1096. doi:10.1111/j.1476-5381.2012.01856.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yavropoulou MP, Yovos JG (2008) Osteoclastogenesis—current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8(3):204–216

    PubMed  CAS  Google Scholar 

  • Yu H, Ferrier J (1994) Mechanisms of ATP-induced Ca2+ signaling in osteoclasts. Cell Signal 6(8):905–914

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang X, Liu Y, He A, Jia R (2010) NFATc1: functions in osteoclasts. Int J Biochem Cell Biol 42(5):576–579. doi:10.1016/j.biocel.2009.12.018

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Goh KJ, Ng HH, Vardy LA (2012) A role for polyamine regulators in ESC self-renewal. Cell Cycle 11(24):4517–4523. doi:10.4161/cc.22772

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VL, Shattil SJ, Ginsberg MH, Ross FP, Teitelbaum SL (2007) Syk, c-Src, the alphavbeta3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol 176(6):877–888. doi:10.1083/jcb.200611083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zou W, Reeve JL, Liu Y, Teitelbaum SL, Ross FP (2008) DAP12 couples c-Fms activation to the osteoclast cytoskeleton by recruitment of Syk. Mol Cell 31(3):422–431. doi:10.1016/j.molcel.2008.06.023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Institute of Chemical Technology project’s grant (SI-1304) and the Inter-ER Cooperation Projects (R0002019) of Korea Institute for Advancement of Technology, which were funded by the Korea Ministry of Knowledge Economy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Jin Son or Seong Hwan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 112 kb)

Supplementary material 2 (DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeon, JT., Ryu, B.J., Choi, SW. et al. Natural polyamines inhibit the migration of preosteoclasts by attenuating Ca2+-PYK2-Src-NFATc1 signaling pathways. Amino Acids 46, 2605–2614 (2014). https://doi.org/10.1007/s00726-014-1797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1797-9

Keywords

Navigation