Skip to main content
Log in

Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Carnosine is a known protector of neuronal cells against oxidative injury which prevents both apoptotic and necrotic cellular death. It was shown earlier that carnosine serves as an intracellular buffer of free radicals. Using the model of ligand-dependent oxidative stress in neurons, we have shown that homocysteine (HC) initiates long-term activation of extracellular signal regulated kinase, isoforms 1 and 2 (ERK 1/2) and Jun N-terminal kinase (JNK) which corresponds to exitotoxic effect resulting in cellular death. l-Carnosine (β-alanyl-l-histidine) protects neurons from both excitotoxic effect of homocysteine and cellular death. Its analogs, β-alanyl-d-histidine (d-carnosine) and l-histidyl-β-alanine, restricted accumulation of free radicals and delayed activation of ERK1/2 and JNK in neuronal cells, but did not promote neuronal viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aruoma OI, Laughton MJ, Halliwell B (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem J 264(3):863–869

    PubMed  CAS  Google Scholar 

  • Boldyrev AA (1993) Does carnosine possess direct antioxidant activity? Int J Biochem 25(8):1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA (2003) Significance of reactive oxygen species for neuronal function. In: Tomasi A et al (eds) Free radicals, NO, and inflammation molecular, biochemical and clinical aspects. IOS Press,   pp 153–169

    Google Scholar 

  • Boldyrev A (2007) Carosine and oxidative stress in cells and tissues. NovaPubl, New York

    Google Scholar 

  • Boldyrev A (2009) Molecular mechanisms of homocysteine toxicity. Biochemistry (Mosc) 74(6):589–598

    Article  CAS  Google Scholar 

  • Boldyrev A (2011) Carnosine—new concepts for the old molecule. In: Carnosine in exercise and disease. Abstract book of international congress, Ghent, p 2

    Google Scholar 

  • Boldyrev AA, Dupin AM, Bunin AY, Babizhaev MA, Severin SE (1987) The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem Int 15:1105–1113

    PubMed  CAS  Google Scholar 

  • Boldyrev AA, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94:571–577

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev A, Arzumanyan E, Kulebyakin K, Berezov T (2011) Novel mechanisms of regulation of brain plasticity. Neurochem J 5(4):301–305

    Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bat TE, Stella AMG, Schapira T, Kostova ATD, Rizzarelli E (2008) Cellular stress response: a novel target for hemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33(12):2444–2471

    Article  PubMed  CAS  Google Scholar 

  • den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MM (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175

    Article  Google Scholar 

  • Glotin AL, Calipel A, Brossas JY, Faussat AM, Treton J, Mascarelli F (2006) Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells. Invest Ophthalmol Vis Sci 47:4614–4623

    Article  PubMed  Google Scholar 

  • Gu L, Hu X, Xue J, Yang J, Wan L, Ren Y, Hertz L, Peng L (2010) Potent homocysteine-induced ERK phosphorylation in cultured neurons depends on self-sensitization via system Xc. Toxicol Appl Pharmacol 242:209–223

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski H, Zhang L, Bardeguez A, Aviv A (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 7(1):45–51

    Google Scholar 

  • Kuleva NV, Kovalenko ZS (1997) Change in the functional properties of actin by its glycation in vitro. Biochem (Mosc) 62(10):1119–1123

    Google Scholar 

  • Makhro AV, Mashkina AP, Solenaya OA, Trunova OA, Tyulina OV, Bulygina ER, Boldyrev AA (2008) Carnosine protects from oxidative stress induced by hyperhomocysteinemia. Neurochem J 2(3):202–208

    Article  Google Scholar 

  • McCurbey JA, La Hair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8:1775–1789

    Article  Google Scholar 

  • Navon H, Bromberg Y, Sperling O, Shani E (2011) Neuroprotection by NMDA preconditioning against glutamate cytotoxicity is mediated through activation of ERK 1/2, inactivation of JNK, and by prevention of glutamate-induced CREB inactivation. J Mol Neurosci. doi:10.1007/s12031-011-9532-4

  • Oktyabrsky O, Smirnova G (2007) Red/ox regulation of cellular functions. Biochem Moscow 72:158–174

    Google Scholar 

  • Perla-Kaján J, Jakubowski H (2010) Paraoxonase 1 protects against protein N-homocysteinylation in humans. FASEB J 24(3):931–936

    Google Scholar 

  • Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Ries V, Silva RM, Oo TF, Cheng HC, Rzhetskaya M, Kholodilov N, Flavell RA, Kuan CY, Rakic P, Burke RE (2008) JNK2 and JNK3 combined are essential for apoptosis in dopamine neurons of the substantia nigra, but are not required for axon degeneration. J Neurochem 107(6):1578–1588

    Article  PubMed  CAS  Google Scholar 

  • Sacco RL, Roberts JK, Jacobs BS (1998) Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology 17:167–173

    Article  PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Willson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. New Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  • Son DO, Satsu H, Kiso Y, Totsuka M, Shimizu M (2008) Inhibitory effect of carnosine on interleukin-8 production in intestinal epithelial cells through translational regulation. Cytokine 42(2):265–276

    Article  PubMed  CAS  Google Scholar 

  • Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by RFBR, Grants ## 09-04-00507, 10-04-01461, and 11-04-00906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Boldyrev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulebyakin, K., Karpova, L., Lakonsteva, E. et al. Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling. Amino Acids 43, 91–96 (2012). https://doi.org/10.1007/s00726-011-1135-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1135-4

Keywords

Navigation