Skip to main content
Log in

An approach for classification of highly imbalanced data using weighting and undersampling

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Real-world datasets commonly have issues with data imbalance. There are several approaches such as weighting, sub-sampling, and data modeling for handling these data. Learning in the presence of data imbalances presents a great challenge to machine learning. Techniques such as support-vector machines have excellent performance for balanced data, but may fail when applied to imbalanced datasets. In this paper, we propose a new undersampling technique for selecting instances from the majority class. The performance of this approach was evaluated in the context of several real biological imbalanced data. The ratios of negative to positive samples vary from ~9:1 to ~100:1. Useful classifiers have high sensitivity and specificity. Our results demonstrate that the proposed selection technique improves the sensitivity compared to weighted support-vector machine and available results in the literature for the same datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. Lect Notes Comput Sci 3201:39–50

    Article  Google Scholar 

  • Batuwita R, Palade V (2009a) microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25:989–995

    Article  CAS  PubMed  Google Scholar 

  • Batuwita R, Palade V (2009b) AGm: a new performance measure for class imbalance learning. Application to bioinformatics problems. In: Proceedings of 8th international conference on machine learning and applications, ICMLA 2009, 13–15 December 2009, Miami Beach, USA

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  • Chawla NV, Japkowicz N, Kotcz A (2004) Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor Newsl 6:1–6

    Article  Google Scholar 

  • Chen X, Jeong JC (2009) Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 25:585–591

    Article  PubMed  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428

    Article  CAS  PubMed  Google Scholar 

  • Cortes C (1995) Prediction of generalization ability in learning machines. University of Rochester, Rochester

    Google Scholar 

  • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289–1305

    Article  Google Scholar 

  • Joachims T, Nedellec C, Rouveirol C (1998) Text categorization with support vector machines: learning with many relevant features. In: Machine learning: ECML-98. Springer, Berlin

  • Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205

    Article  CAS  PubMed  Google Scholar 

  • Kubat M, Holte R, Matwin S (1997) Learning when negative examples abound. In: Proceedings of the 9th European conference on Machine Learning. LNCS, vol 1224. Springer, London, pp 146–153

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Wu J, Zhou ZH (2009) Exploratory Undersampling for Class-Imbalance Learning. IEEE Trans Syst Man Cybern B 39:539–550

    Article  Google Scholar 

  • Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA, Tourassi GD (2008) Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw 21:427–436

    Article  PubMed  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi K, Deane CM, Blundell TL, Johnson MS, Overington JP (1998) JOY: protein sequence-structure representation and analysis. Bioinformatics 14:617–623

    Article  CAS  PubMed  Google Scholar 

  • Mladenic D, Grobelnik M (1999) Feature selection for unbalanced class distribution and naive bayes. In: Proceedings of the Sixteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, pp 258–267

  • Nishikawa K, Ooi T (1986) Radial locations of amino acid residues in a globular protein: correlation with the sequence. J Biochem 100:1043–1047

    CAS  PubMed  Google Scholar 

  • Osuna E, Freund R, Girosit F (1997) Training support vector machines: an application to face detection. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997, pp 130–136

  • Porter CT, Bartlett GJ, Thornton JM (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32:D129

    Article  CAS  PubMed  Google Scholar 

  • Pugalenthi G, Kumar KK, Suganthan PN, Gangal R (2008) Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Biochem Biophys Res Commun 367:630–634

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Sharabi O, Sun Y, Adams R, Boekhorst R, Rust AG, Davey N (2007) Using real-valued meta classifiers to integrate and contextualize binding site predictions. Lect Notes Comput Sci 4431:822–829

    Article  Google Scholar 

  • Sales AP, Tomaras GD, Kepler TB (2008) Improving peptide-MHC class I binding prediction for unbalanced datasets. BMC Bioinform 9:385

    Article  Google Scholar 

  • Shi MG, Xia JF, Li XL, Huang DS (2009) Predicting protein–protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Amino Acids

  • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21:631–643

    Article  CAS  PubMed  Google Scholar 

  • Sun XD, Huang RB (2006) Prediction of protein structural classes using support vector machines. Amino Acids 30:469–475

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Zhang YQ, Chawla NV, Krasser S (2009) SVMs modeling for highly imbalanced classification. IEEE Trans Syst Man Cybern B 39:281–288

    Article  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Verma R, Varshney GC, Raghava GP (2009) Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile. Amino Acids

  • Veropoulos K, Campbell C, Cristianini N (1999) Controlling the sensitivity of support vector machines. In: Proceedings of the sixteenth international joint conference on artificial intelligence (IJCAI99)

  • Wang M, Yang J, Chou KC (2005) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 28(4):395–402

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xue Z, Shen G, Xu J (2008) PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids 35(2):295–302

    Article  PubMed  Google Scholar 

  • Wu G, Chang EY (2003) Class-boundary alignment for imbalanced dataset learning. In: ICML 2003 workshop on learning from imbalanced data sets II. Washington, DC

  • Wu J, Liu H, Duan X, Ding Y, Wu H, Bai Y, Sun X (2009) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 25:30–35

    Article  CAS  PubMed  Google Scholar 

  • Yang ZR (2004) Biological applications of support vector machines. Briefings Bioinform 5:328–338

    Article  CAS  Google Scholar 

  • Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bloedorn E, Rosen L, Venese D, Inc AOL, Dulles VA (2004) Learning rules from highly unbalanced data sets. In: Fourth IEEE international conference on data mining, 2004. ICDM’04, pp 571–574

Download references

Acknowledgments

The authors acknowledge financial support offered by the Agency for Science, Technology, and Research, Singapore (A*Star) under grant #052 101 0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Suganthan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, A., Pugalenthi, G., Fogel, G.B. et al. An approach for classification of highly imbalanced data using weighting and undersampling. Amino Acids 39, 1385–1391 (2010). https://doi.org/10.1007/s00726-010-0595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0595-2

Keywords

Navigation