Skip to main content
Log in

Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding dl-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IAAs:

Indispensable amino acids

DAAs:

Dispensable amino acids

PC:

Phosphocholine

PE:

Phosphoethanolamine

SAH:

S-Adenosylhomocysteine

SAM:

S-Adenosylmethionine

tHcy:

Total homocysteine

TAG:

Triacylglycerol

NAFLD:

Non-alcoholic fatty liver disease

FAS:

Fatty acid synthase

References

  • Allard JP, Aghdassi E, Mohammed S, Raman M, Aand G, Arendt BM, Jalali P, Kandasamy T, Prayitno N, Sherman M, Guindi M, Ma DWL, Heathcote JE (2008) Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol 48:3200–3307

    Article  Google Scholar 

  • Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  CAS  PubMed  Google Scholar 

  • Arakawa N, Ha TY, Otsuka M (1989) An improved high-performance liquid chromatographic assay for the determination of free and esterified carnitine in animal tissues. J Nutr Sci Vitaminol 35:475–479

    CAS  PubMed  Google Scholar 

  • Bell JG, Dick JR, McVicar AH, Sargent JR, Thompson KD (1993) Dietary sunflower, linseed and fish oils affect phospholipids fatty acid composition, development of cardiac lesions phospholipase activity and eicosanoid production in Atlantic salmon (Salmo salar). Prostaglandins Leukot Essent Fatty Acids 49:665–673

    Article  CAS  PubMed  Google Scholar 

  • Cantoni GL (1982) S-adenosyl amino acids thirty years later: 1951–1981. In: Usdin E, Borchardt RT, Creveling CR (eds) The biochemistry of S-adenosylmethionine and related compounds. Macmillan Press, London, pp 3–10

    Google Scholar 

  • Cantoni GL, Chiang PK (1980) The role of S-adenosylhomocysteine hydrolase in the control of biological methylations. In: Cavallini D, Gaull GE, Zappia V (eds) Natural sulphur compounds. Plenum Press, New York, pp 67–80

    Google Scholar 

  • Chawla RK, Watson WH, Eastin CE, Lee EY, Schmidt J, McClain CJ (1998) S-adenosylmethionine deficiency and TNF-α in lipopolysaccharide-induced hepatic injury. Am J Physiol 275:G125–G129

    CAS  PubMed  Google Scholar 

  • Chen W, Matuda K, Nishimura N, Yokogoshi H (2004) The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet. Life Sci 74:1889–1898

    Article  CAS  PubMed  Google Scholar 

  • Choi MJ, Kim JH, Chang KJ (2006) The effect of dietary taurine supplementation on plasma and liver lipid concentrations and free amino acid concentrations in rats fed a high-cholesterol diet. Adv Exp Med Biol 583:235–242

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Vance DE (1996) Expression of phosphatidylethanolamine N-methyltransferase-2 is markedly enhanced in long term choline-deficient rats. J Biol Chem 271:2839–2843

    Article  CAS  PubMed  Google Scholar 

  • Dias J, Alvarez MJ, Arzel J, Corraze G, Diez A, Bautista JM, Kaushik SJ (2005) Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol 142:19–31

    Article  CAS  Google Scholar 

  • Dolinsky VM, Douglas DN, Lehner R, Vance DE (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378:967–974

    Article  CAS  PubMed  Google Scholar 

  • El-Badry AM, Graf R, Clavien P-A (2007) Omega 3–omega 6: what is right for the liver? J Hepatol 47:718–725

    Article  CAS  PubMed  Google Scholar 

  • Espe M, Lied E, Torrissen KR (1993) Changes in plasma and muscle free amino-acids in Atlantic salmon (Salmo salar) during absorption of diets containing different amounts of hydrolyzed cod muscle protein. Comp Biochem Physiol 105:555–562

    Article  Google Scholar 

  • Espe M, Sveier H, Høgøy I, Lied E (1999) Nutrient absorption and growth of Atlantic salmon (Salmo salar L.) fed fish protein concentrate. Aquaculture 174:119–137

    Article  CAS  Google Scholar 

  • Espe M, Lemme A, Petri A, El-Mowafi A (2006) Can Atlantic salmon grow on diets devoid of fish meal? Aquaculture 255:255–262

    Article  CAS  Google Scholar 

  • Espe M, Lemme A, Petri A, El-Mowafi A (2007) Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture 263:168–178

    Article  CAS  Google Scholar 

  • Espe M, Hevrøy EH, Liaset B, Lemme A, El-Mowafi A (2008) Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture 274:132–141

    CAS  Google Scholar 

  • FAO (2005) Technical paper No. 457, FAO Rome, 235 pp

  • Fukada S-I, Shimada Y, Morita T, Sugiyama K (2006) Suppression of methionine induced hyperhomocysteinemia by glycine and serine in rats. Biosci Biotechnol Biochem 70:2403–2409

    Article  CAS  PubMed  Google Scholar 

  • Gaylord TG, Teague AM, Barrows FT (2006) Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). J World Aquacult Soc 37:509–517

    Article  Google Scholar 

  • Gaylord TG, Barrows FT, Teague AM, Johansen KA, Overturf KE, Shepherd B (2007) Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 269:514–524

    Article  CAS  Google Scholar 

  • Gomes EF, Rema P, Kaushik SJ (1995) Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture 130:177–186

    Article  Google Scholar 

  • Gomez-Requeni P, Mingarro M, Calduch-Giner JA, Medale F, Martin SAM, Houlihan DF, Kaushik S, Perez-Sanchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510

    Article  CAS  Google Scholar 

  • Hirche F, Schröder A, Knoth B, Stangl GI, Eder K (2006) Methionine-induced elevation of plasma homocysteine concentration is associated with an increase of plasma cholesterol in adult rats. Ann Nutr Metab 50:139–146

    Article  CAS  PubMed  Google Scholar 

  • Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. PNAS 100:12027–12032

    Article  CAS  PubMed  Google Scholar 

  • Hsu RY, Wasson G, Porter JW (1965) Purification and properties of fatty acid synthase of pigeon liver. J Biol Chem 240:3736

    CAS  PubMed  Google Scholar 

  • Jacobs RL, Stead LM, Devlin C, Tabas I, Brosnan ME, Brosnan JT, Vance DE (2005) Physiological regulation of phospholipids methylation alters plasma homocysteine in mice. J Biol Chem 280:28299–28305

    Article  CAS  PubMed  Google Scholar 

  • Jin CJ, Park HK, Cho YM, Pak YK, Lee K-u, Kim MS, Frisco S, Choi S-W, Park KS, Lee HK (2007) S-adenosyl-l-methionine increases skeletal muscle mitochondrial DNA density and whole body insulin sensitivity in OLETF rats. J Nutr 137:339–344

    CAS  PubMed  Google Scholar 

  • Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M (1995) Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout (Oncorhynchus mykiss). Aquaculture 133:257–274

    Article  CAS  Google Scholar 

  • Kim SK, Takeuchi T, Yokoyama M, Murata Y, Kaneniva M, Sakakura Y (2005) Effect of dietary taurine levels on growth and feeding behaviour of juvenile Japanese flounder Paralichtys olivaceus. Aquaculture 250:765–774

    Article  CAS  Google Scholar 

  • Kishida T, Ishikawa H, Tsukaoka M, Ohga H, Ogawa H, Ebihara K (2003) Increase of bile acid synthesis and excretion caused by taurine administration prevents the ovariectomy-induced increase in cholesterol concentrations in the serum low-density lipoprotein fraction of Wistar rats. J Nutr Biochem 14:7–16

    Article  CAS  PubMed  Google Scholar 

  • Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358

    CAS  PubMed  Google Scholar 

  • Kwon DY, Jung YS, Kim SJ, Park HK, Park JH, Kim YC (2009) Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. J Nutr 139:63–68

    CAS  Google Scholar 

  • Liaset B, Julshamn K, Espe M (2003) Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymatic hydrolysis of salmon frames with ProtamexTM. Proc Biochem 38:1747–1759

    Article  CAS  Google Scholar 

  • Liaset B, Madsen L, Qin H, Criales G, Mellgren G, Marschall HU, Hallenborg P, Espe M, Frøyland L, Kristiansen K (2009) Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats. Biochim Biophys Acta Mol Cell Biol Lip 1791:254–262

    CAS  Google Scholar 

  • Lu SC, Alvarez L, Huang Z-Z, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM (2001) Methionine adenosyltransferase 1 knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. PNAS 98:5560–5565

    Article  CAS  PubMed  Google Scholar 

  • Madsen L, Rustan AC, Vaagenes H, Berge K, Dyrøy E, Berge RK (1999) Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 34:951–963

    Article  CAS  PubMed  Google Scholar 

  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Mambrini M, Roem AJ, Cravèdi JP, Lallès JP, Kaushik SJ (1999) Effects of replacing fish meal with soy protein concentrate and of dl-methionine supplementation in high-energy extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J Anim Sci 77:2990–2999

    CAS  PubMed  Google Scholar 

  • Mato JM, Corrales FJ, Lu SC, Avila MA (2002) S-adenosylmethionine: a control switch that regulates liver function. FASEB J 16:15–26

    Article  CAS  PubMed  Google Scholar 

  • Matsunari H, Takeuchi T, Takahashi M, Mushiake K (2005) Effects of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fish Sci 71:1131–1135

    Article  CAS  Google Scholar 

  • Murakami S, Kondo Y, Toda Y, Kitajima H, Kameo K, Sakono M, Fukuda N (2002) Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci 70:2356–2366

    Article  Google Scholar 

  • Nanami K, Oda H, Yokogoshi H (1996) Antihypercholesterolemic action of taurine on streptozotocin-diabetic rats or rats fed a high cholesterol diet. Adv Exp Med Biol, taurine 2, pp 561–568

  • Noga AA, Vance DE (2003) Insights into the requirement of phosphatidylcholine synthesis for liver function in mice. J Lipid Res 44:1998–2005

    Article  CAS  PubMed  Google Scholar 

  • Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan receptor. Science 284:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Puri P, Baillie RA, MER WiestMED, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ, Sanyal AJ (2007) A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernandezpalacios H (1995) Soybean and lupin seed meals as protein-sources in diets for gilthead seabream (Sparus aurata)—nutritional and histological implications. Aquaculture 130:219–233

    Article  Google Scholar 

  • Rodehutscord M, Becker A, Pack M, Pfeffer E (1997) Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. J Nutr 127:1166–1175

    CAS  PubMed  Google Scholar 

  • Rowling MJ, McMullen MH, Chipman DC, Schaliniske KL (2002) Hepatic glycine N-methyltransferase is up-regulated by excess dietary methionine in rats. J Nutr 132:2545–2550

    CAS  PubMed  Google Scholar 

  • Rumsey GL, Page JW, Scott ML (1983) Methionine and cystine requirements of rainbow trout. Prog Fish Cult 45:139–143

    Article  CAS  Google Scholar 

  • Shields DJ, Lingrell S, Agellon LB, Brosnan JT, Vance DE (2005) Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase. J Biol Chem 280:27339–27344

    Article  CAS  PubMed  Google Scholar 

  • Slow S, Garrow TA (2006) Liver choline dehydrogenase and kidney betaine-homocysteine methyltransferase expression are not affected by methionine or choline intake in growing rats. J Nutr 136:2279–2283

    CAS  PubMed  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    CAS  PubMed  Google Scholar 

  • Stefanovic-Racic M, Perdomo G, Mantell BS, Sipula IJ, Brown NF, O’Doherty MO (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol Endocrinol Metab 294:E969–E977

    Article  CAS  PubMed  Google Scholar 

  • Suckling KE, Benson GM, Bond B, Gee A, Glen A, Hayes C, Jackson B (1991) Cholesterol lowering and bile acid excretion in the hamster with cholestyramine treatment. Atherosclerosis 89:183–190

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Kumazawa A, Zhou H, Saeki S (1998) Dietary methionine level affects linoleic acid metabolism through phosphatidylethanolamine N-methylation in rats. Lipids 33:235–242

    Article  CAS  PubMed  Google Scholar 

  • Sveier H, Nordas H, Berge GE, Lied E (2001) Dietary inclusion of crystalline d- and l-methionine: effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon. Aquacult Nutr 7:169–181

    Article  CAS  Google Scholar 

  • Tacon AGJ (1995) Feed ingredients for carnivorous fish species: alternatives to fishmeal and other fishery resources In: Reinertsen H, Haaland H (eds) Sustainable fish farming. Balkema, Rotterdam, pp 89–114

  • Takagi S, Murata H, Goto T, Ichiki T, Endo M, Hatate H, Yoshida T, Sakai T, Yamashita H, Ukawa M (2006) Efficacy of taurine supplementation for preventing green liver syndrome and improving growth performance in yearling red sea bream Pagus major fed low fishmeal diets. Fish Sci 72:1191–1199

    Article  CAS  Google Scholar 

  • Vance DE (2008) Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol 19:229–234

    Article  CAS  PubMed  Google Scholar 

  • Vance DE, Walkey CJ (1998) Roles for the methylation of phosphatidylethanolamine. Curr Opin Lipidol 9:125–130

    Article  CAS  PubMed  Google Scholar 

  • Vessey DA, Whitney J, Gollan JL (1983) The role of conjugation reactions in enhancing biliary secretion of bile acids. Biochem J 214:923–927

    CAS  PubMed  Google Scholar 

  • Walkey CJ, Yu LQ, Agellon LB, Vance DE (1998) Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem 273:27043–27046

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Kramer M, Yang S, Pereira A, Tao L (2001) Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-l-methionine and S-adenosyl-l-homocysteine in mouse liver and the effect of methionine on their concentration. J Chromatogr B762:59–65

    Google Scholar 

  • Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, abd SREBP-1C. J Clin Invest 113:1408–1418

    CAS  PubMed  Google Scholar 

  • Yokogoshi H, Oda H (2002) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. Amino Acids 23:433–439

    Article  CAS  PubMed  Google Scholar 

  • Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H (1999) Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 129:1705–1712

    CAS  PubMed  Google Scholar 

  • Zhan XA, Li JX, Xu ZR, Zhao RQ (2006) Effects of methionine and betaine supplementation on growth performance, carcass composition and metabolism of lipids in male broilers. Br Poult Sci 47:576–580

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Leaver MJ, Tocher DR (2009) Long-chain polyunsaturated fatty acid synthesis in fish: comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Δ6 fatty acyl desaturase gene promoters. Comp Biochem Physiol 154:255–263

    Google Scholar 

Download references

Acknowledgments

The technical assistance from Anita Birkenes, Joseph Martin Malaiamaan and Thu Thao Nguyen at NIFES is highly appreciated. Anne Brit Fjermestad and Henny Dirdal at EWOS Innovation AS are thanked for is thanked for taking care of the experimental fish as well as in sampling thereof. The experiment was partly supported by The Norwegian Research Council. Dr Raja M Rathore was supported by an International Scholarship from the Norwegian Research Council during his stay at NIFES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marit Espe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espe, M., Rathore, R.M., Du, ZY. et al. Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar . Amino Acids 39, 449–460 (2010). https://doi.org/10.1007/s00726-009-0461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0461-2

Keywords

Navigation