Skip to main content

Advertisement

Log in

Structural biology of S-adenosylmethionine decarboxylase

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AdoMetDC:

S-adenosylmethionine decarboxylase

dcAdoMet:

S-adenosyl-5′-(3-methylthiopropylamine)

AdoMet:

S-adenosylmethionine

MeAdoMet:

S-adenosylmethionine methyl ester

hAdoMetDC:

Human AdoMetDC

pAdoMetDC:

Potato AdoMetDC

TmAdoMetDC:

Thermotoga maritima AdoMetDC

ODC:

Ornithine decarboxylase

MGBG:

Methylglyoxal bis(guanylhydrazone)

CGP48664A:

4-Amidinoindan-1-one-2′-amidinohydrazone

MMTA:

5′-Deoxy-5′-(dimethylsulfonio)adenosine

DMAMA:

5′-Deoxy-5′-(N-dimethyl)amino-8-methyl adenosine

MHZPA:

5′-Deoxy-5′-[N-methyl-N-(3-hydrazinopropyl)amino]adenosine

MAOEA:

5′-Deoxy-5′-[N-methyl-N-[(2-aminooxy)ethyl]amino]adenosine

TbAdoMetDC:

Trypanosomabrucei AdoMetDC

References

  • Albert A, Dhanaraj V, Genschel U, Khan G, Ramjee MK, Pulido R, Sibanda BL, von Delft F, Witty M, Blundell TL, Smith AG, Abell C (1998) Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing. Nat Struct Biol 5:289–293

    Article  CAS  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Yarlet N, Goldberg B, McCann PP, Sjoerdsma A, Saric M, Clarkson AB (1994) Combination chemotherapy of drug-resistant Trypanosoma brucei rhodesiense infections in mice using DL-α-difluoromethylornithine and standard trypanocides. Antimicrob Agents Chemother 38:563–569

    CAS  PubMed  Google Scholar 

  • Bale S, Lopez MM, Makhatadze GI, Fang Q, Pegg AE, Ealick SE (2008) Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase. Biochemistry 47:13404–13417

    Article  CAS  PubMed  Google Scholar 

  • Bale S, Brooks W, Hanes JW, Mahesan AM, Guida WC, Ealick SE (2009) Role of the Sulfonium center in determining the ligand specificity of human S-adenosylmethionine decarboxylase. Biochemistry 48:6423–6430

    Article  CAS  PubMed  Google Scholar 

  • Basuroy UK, Gerner EW (2006) Emerging concepts in targeting the polyamine metabolic pathway in epithelial cancer chemoprevention and chemotherapy. J Biochem 139:27–33

    Article  CAS  PubMed  Google Scholar 

  • Bennett EM, Ekstrom JE, Pegg AE, Ealick SE (2002) Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation. Biochemistry 41:14509–14517

    Article  CAS  PubMed  Google Scholar 

  • Beswick TC, Willert EK, Phillips MA (2006) Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 45:7797–7807

    Article  CAS  PubMed  Google Scholar 

  • Brooks WH, McCloskey DE, Daniel KG, Ealick SE, Secrist JA 3rd, Waud WR, Pegg AE, Guida WC (2007) In silico chemical library screening and experimental validation of a novel 9-aminoacridine based lead-inhibitor of human S-adenosylmethionine decarboxylase. J Chem Inf Model 47:1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  CAS  PubMed  Google Scholar 

  • Clyne T, Kinch LN, Phillips MA (2002) Putrescine activation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 41:13207–13216

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom JE, Matthews II, Stanley BA, Pegg AE, Ealick SE (1999) The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 Å resolution reveals a novel fold. Structure 7:583–595

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom JL, Tolbert WD, Xiong H, Pegg AE, Ealick SE (2001) Structure of a human S-adenosylmethionine decarboxylase self-processing ester intermediate and mechanism of putrescine stimulation of processing as revealed by the H243A mutant. Biochemistry 40:9495–9504

    Article  CAS  PubMed  Google Scholar 

  • Fabian CJ, Kimler BF, Brady DA, Mayo MS, Chang CH, Ferraro JA, Zalles CM, Stanton AL, Masood S, Grizzle WE, Boyd NF, Arneson DW, Johnson KA (2002) A phase II breast cancer chemoprevention trial of oral alpha-difluoromethylornithine: breast tissue, imaging, and serum and urine biomarkers. Clin Cancer Res 8:3105–3117

    CAS  PubMed  Google Scholar 

  • Gallagher T, Snell EE, Hackert ML (1989) Pyruvoyl-dependent histidine decarboxylase. Active site structure and mechanistic analysis. J Biol Chem 264:12737–12743

    CAS  PubMed  Google Scholar 

  • Gallagher T, Rozwarski DA, Ernst SR, Hackert ML (1993) Refined structure of the pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a. J Mol Biol 230:516–528

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr, Goldschmid S, Lance P, Pelot D (2007) Rationale for, and design of, a clinical trial targeting polyamine metabolism for colon cancer chemoprevention. Amino Acids 33:189–195

    Article  CAS  PubMed  Google Scholar 

  • Hackert ML, Pegg AE (1997) Pyruvoyl-dependent enzymes, comprehensive biological catalysis. In: Sinnott ML (eds) Academic Press, London, pp 201–216

  • Hoyt MA, Williams-Abbott LJ, Pitkin JW, Davis RH (2000) Cloning and expression of the S-adenosylmethionine decarboxylase gene of Neurospora crassa and processing of its product. Mol Gen Genet 263:664–673

    Article  CAS  PubMed  Google Scholar 

  • Kim AD, Graham DE, Seeholzer SH, Markham GD (2000) S-Adenosylmethionine decarboxylase from archaeon Methanococcus jannaschii: identification of a novel family of pyruvol enzymes. J Bacteriol 182:6667–6672

    Article  CAS  PubMed  Google Scholar 

  • Lu ZJ, Markham GD (2007) Metal ion activation of S-adenosylmethionine decarboxylase reflects cation charge density. Biochemistry 46:8172–8180

    Article  CAS  PubMed  Google Scholar 

  • Markham GD, Norrby PO, Bock CW (2002) S-adenosylmethionine conformations in solution and in protein complexes: conformational influences of the sulfonium group. Biochemistry 41:7636–7646

    Article  CAS  PubMed  Google Scholar 

  • McCloskey DE, Bale S, Secrist JA, Tiwari A, Moss TH, Valiyaveettil J, Brooks WH, Guida WC, Pegg AE, Ealick SE (2009) New insights into the design of inhibitors of human S-adenosylmethionine decarboxylase: studies of adenine C(8) substitution in structural analogues of S-adenosylmethionine. J Med Chem 52:1388–1407

    Article  CAS  Google Scholar 

  • Meyskens FL Jr, Gerner EW (1999) Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5:945–951

    CAS  PubMed  Google Scholar 

  • Millward MJ, Joshua A, Kefford R, Aamdal S, Thomson D, Hersey P, Toner G, Lynch K (2005) Multi-centre phase II trial of the polyamine synthesis inhibitor SAM486A (CGP48664) in patients with metastatic melanoma. Invest New Drugs 23:253–256

    Article  CAS  PubMed  Google Scholar 

  • Ndjonka D, Da’dara A, Walter RD, Luersen K (2003) Caenorhabditis elegans S-adenosylmethionine decarboxylase is highly stimulated by putrescine but exhibits a low specificity for activator binding. Biol Chem 384:83–91

    Article  CAS  PubMed  Google Scholar 

  • Pankaskie M, Abdel-Monem MM (1980) Inhibitors of polyamine biosynthesis 8: irreversible inhibition of mammalian S-adenosyl-l-methionine decarboxylase by substrate analogs. J Med Chem 23:121–127

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48:759–774

    CAS  PubMed  Google Scholar 

  • Pegg AE, Jacobs G (1983) Comparison of inhibitors of S-adenosylmethionine decarboxylase from different species. Biochem J 213:495–502

    CAS  PubMed  Google Scholar 

  • Pegg AE, Xiong H, Feith D, Shantz LM (1998) S-adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans 26:580–586, 526

    Google Scholar 

  • Schmitzberger F, Kilkenny ML, Lobley CM, Webb ME, Vinkovic M, Matak-Vinkovic D, Witty M, Chirgadze DY, Smith AG, Abell C, Blundell TL (2003) Structural constraints on protein self-processing in l-aspartate-α-decarboxylase. EMBO J 22:6193–6204

    Article  CAS  PubMed  Google Scholar 

  • Sekowska A, Coppée J-Y, Le Caer J-P, Martin-Verstraete I, Danchin A (2000) S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. Mol Microbiol 36:1135–1147

    Article  CAS  PubMed  Google Scholar 

  • Soriano EV, McCloskey DE, Kinsland C, Pegg AE, Ealick SE (2008) Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii. Acta Crystallogr D Biol Crystallogr 64:377–382

    Article  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984a) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. Advan Enzymol Related Areas Mol Biol 56:251–282

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984b) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Tolbert DW, Ekstrom JL, Mathews II, Secrist JAI, Kapoor P, Pegg AE, Ealick SE (2001) The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40:9484–9494

    Article  CAS  PubMed  Google Scholar 

  • Tolbert WD, Graham DE, White RH, Ealick SE (2003a) Pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii: crystal structures of the self-cleaved and S53A proenzyme forms. Structure 11:285–294

    Article  CAS  PubMed  Google Scholar 

  • Tolbert WD, Zhang Y, Cottet SE, Bennett EM, Ekstrom JL, Pegg AE, Ealick SE (2003b) Mechanism of human S-adenosylmethionine decarboxylase proenzyme processing as revealed by the structure of the S68A mutant. Biochemistry 42:2386–2395

    Article  CAS  PubMed  Google Scholar 

  • Toms AV, Kinsland C, McCloskey DE, Pegg AE, Ealick SE (2004) Evolutionary links as revealed by the structure of Thermotoga maritima S-Adenosylmethionine decarboxylase. J Biol Chem 279:33837–33846

    Article  CAS  PubMed  Google Scholar 

  • van Poelje PD, Snell EE (1990) Pyruvol-dependent enzymes. Ann Rev Biochem 59:29–59

    Article  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  Google Scholar 

  • Willert EK, Phillips MA (2009) Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 168:1–6

    Google Scholar 

  • Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104:8275–8280

    Article  CAS  PubMed  Google Scholar 

  • Williams-Ashman HG, Schenone A (1972) Methylglyoxal bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun 46:288–295

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Pegg AE (1999) Mechanistic studies of the processing of human S-adenosylmethionine decarboxylase proenzyme. Isolation of an ester intermediate. J Biol Chem 274:35059–35066

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Stanley BA, Pegg AE (1999) Role of cysteine-82 in the catalytic mechanism of human S-adenosylmethionine decarboxylase. Biochemistry 38:2462–2470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Leslie Kinsland for assistance in the preparation of this manuscript. This work was supported by National Institutes of Health Grant CA-94000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Ealick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bale, S., Ealick, S.E. Structural biology of S-adenosylmethionine decarboxylase. Amino Acids 38, 451–460 (2010). https://doi.org/10.1007/s00726-009-0404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0404-y

Keywords

Navigation