Skip to main content
Log in

Magnetic Properties of Fe/Ni and Fe/Co Multilayer Thin Films

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Reiss, D. Meyners, Appl. Phys. Lett. 88, 043505 (2006)

    Article  ADS  Google Scholar 

  2. J.S. Moodera, L.S. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995). doi:10.1103/PhysRevLett.74.3273

    Article  ADS  Google Scholar 

  3. T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139, L231–L234 (1995)

    Article  ADS  Google Scholar 

  4. M. Bibes, M. Bowen, A. Barthélémy, A. Anane, Appl. Phys. Lett. 82, 3269–3271 (2003)

    Article  ADS  Google Scholar 

  5. W. Butler, X. Zhang, T. Schulthess, J. MacLaren, Phys. Rev. B 63, 054416 (2001)

    Article  ADS  Google Scholar 

  6. J. Mathon, A. Umerski, Phys. Rev. B 63, 220403 (2001)

    Article  ADS  Google Scholar 

  7. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S. Yang, Nat. Mater. 3, 862–867 (2004)

    Article  ADS  Google Scholar 

  8. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868–871 (2004)

    Article  ADS  Google Scholar 

  9. L. Néel, C. R. Acad. Sci. 255, 1676 (1962)

    Google Scholar 

  10. R. Zhang, R. Skomski, X. Yin, S.-H. Liou, D.J. Sellmyer, J. Appl. Phys. 107, 09E710 (2010). doi:10.1063/1.3360768

    Article  Google Scholar 

  11. J. Varalda, J. Milano, A.J.A. de Oliveira, E.M. Kakuno, I. Mazzaro, D.H. Mosca, L.B. Steren, M. Eddrief, M. Marangolo, D. Demaille, V.H. Etgens, J. Phys. Condens. Matter 18, 9105–9118 (2006). doi:10.1088/0953-8984/18/39/036

    Article  ADS  Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996), p. 449

    Google Scholar 

  13. C. Kittel, C. Herring, Phys. Rev. 77, 725 (1950)

    ADS  Google Scholar 

  14. Z. Frait, D. Fraitova, in Spin Waves and Magnetic Exitations Part 2 (North-Holland Physics Publishing, Amsterdam, 1988). ISBN:0 444 87078 4

  15. D. Fraitová, Phys. Stat. Sol. (b) 120, 659 (1983). doi:10.1002/pssb.2221200223  

    Article  ADS  Google Scholar 

  16. B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yıldız, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007). doi:10.1063/1.2749469

    Article  ADS  Google Scholar 

  17. H. Puszkarski, P. Tomczak, Sci. Rep. 4, 6135 (2014). doi:10.1038/srep06135

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey), Grant No. 115F472 and by TÜBITAK / RFBR (Russian Fund for Basic Research), joint project Nos. 213M524 / 14-02-91374_ст-а. A. Goikhman is grateful for the financial support from Russian Science Foundation: Grant No. 15-12-10038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulat Z. Rameev.

Additional information

The works by Ali C. Basaran and Bekir Aktaş have been done at Gebze Technical University. The authors are not affiliated to the university at the time of publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, F., Rameev, B.Z., Basaran, A.C. et al. Magnetic Properties of Fe/Ni and Fe/Co Multilayer Thin Films. Appl Magn Reson 48, 85–99 (2017). https://doi.org/10.1007/s00723-016-0849-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0849-6

Keywords

Navigation