Skip to main content
Log in

Time-Resolved and Pulse EPR Study of Conjuncted Porphyrin Trimer

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The short-lived states of the photoexcited conjuncted porphyrin trimer, in which two side zinc porphyrin fragments differ from the central fragment, have been studied by time-resolved continuous-wave and pulse electron paramagnetic resonance (EPR) in X- and Q-bands. It was shown that the observed spectra are the sum of the spectra of two types of porphyrin components. This was particularly evident in the echo-detected spectra at the relatively large time delay between echo-forming microwave pulses when not all the signals were detected due to the anisotropy of phase relaxation times of porphyrin systems. The parameters of the excited triplet states were determined and it was shown that the two types of excited triplet states were characterized by the same values of the g-factors but different values of the zero-field splitting. The anisotropy of the g-tensors of triplet states was estimated from the frequency dependence of the EPR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.P. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109, 1659–1713 (2009)

    Article  Google Scholar 

  2. C.M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 109, 1630–1658 (2009)

    Article  Google Scholar 

  3. D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 34, 40–41 (2001)

    Article  Google Scholar 

  4. D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35(1), 57–69 (2002)

    Article  Google Scholar 

  5. D. Kim, A. Osuka, Acc. Chem. Res. 37(10), 735–745 (2004)

    Article  Google Scholar 

  6. N. Aratani, A. Osuka, H.S. Cho, D. Kim, J. Photochem. Photobiol. C Photochem. Rev. 3, 25–52 (2002)

    Article  Google Scholar 

  7. H. Meier. Angew. Chem. Int. Ed. 78, 3911–3913 (2009)

    Article  Google Scholar 

  8. K. Sugiyasu, M. Takeuchi. Chem. Eur. J. 15, 6350–6362 (2009)

    Article  Google Scholar 

  9. J.-H. Chou, M.E. Kosal, H.S. Nalwa, N.A. Rakow, K.S. Suslick, in Porphyrin Handbook/Applications: Past, Present and Future, The PorphyrinHandbook, vol. 6, ed. by K.M. Kadish, K. Smith, R. Guillard (Academic Press: San Diego, 2000)

  10. A. Ambroise, C. Kirmaier, R.W. Wagner, R.S. Loewe, D.F. Bocian, D. Holten, J.S. Lindsey, J. Org. Chem. 67, 3811–3826 (2002)

    Article  Google Scholar 

  11. S. Punidha, M. Ravikanth, Tetrahedron 64, 8016–8028 (2008)

    Article  Google Scholar 

  12. J.K. Molloy, O. Kotova, R.D. Peacock, T. Gunnlaugsson, Org. Biomol. Chem. 10, 314–322 (2012)

    Article  Google Scholar 

  13. A.C. Cunha, A.T.P.C. Gomes, V.F. Ferreira, M.C.V.B. Souza, M.G.P.M.S. Neves, A.C. Tome, A.M.S. Silva, J.A.S. Cavaleiro, Synthesis 2010, 510–514 (2010)

    Article  Google Scholar 

  14. S.S. Kim, S.I. Weissman, J. Magn. Reson. 24, 167 (1976)

    ADS  Google Scholar 

  15. H. Levanon, J.R. Norris, Chem. Rev. 78, 175 (1978)

    Article  Google Scholar 

  16. S.R. Langhoff, E.R. Davidson, M. Gouterman, W.R. Leenstra, A.L. Kwiram, J. Chem. Phys. 62, 169–176 (1975)

    Article  ADS  Google Scholar 

  17. A. Scherz, H. Levanon, J. Phys. Chem. 84, 324–336 (1980)

    Article  Google Scholar 

  18. O. Gonen, H. Levanon, J. Phys. Chem. 89(9), 1637–1643 (1985)

    Article  Google Scholar 

  19. O. Gonen, H. Levanon, J. Chem. Phys. 84, 4132 (1986)

    Article  ADS  Google Scholar 

  20. S.S. Kim, S.I. Weissman, Rev. Chem. Intermed. 3, 107 (1979)

    Article  Google Scholar 

  21. H. Murai, T. Imamura, K. Obi, J. Phys. Chem. 86, 3279 (1982)

    Article  Google Scholar 

  22. H. Murai, T. Imamura, K. Obi, Chem. Phys. Lett. 87, 295 (1982)

    Article  ADS  Google Scholar 

  23. M. Terazima, S. Yamauchi, N. Hirota, Chem. Phys. Lett. 98, 145 (1983)

    Article  ADS  Google Scholar 

  24. T.K. Chandrashekar, H. van Willigen, M.H. Ebersole, J. Phys. Chem. 88, 4326 (1984)

    Article  Google Scholar 

  25. K. Ishii, S. Yamauchi, Y. Ohba, M. Iwaizumi, I. Uchiyama, N. Hirota, K. Maruyama, A. Osuka, J. Phys. Chem. 98, 9431 (1994)

    Article  Google Scholar 

  26. K. Ishii, Y. Ohba, M. Iwaizumi, S. Yamauchi, J. Phys. Chem. 100, 3839 (1996)

    Article  Google Scholar 

  27. K. Ishii, T. Ishizaki, Y. Ohba, S. Karasawa, N. Koga, S. Yamauchi, Appl. Magn. Reson. 23, 377 (2003)

    Article  Google Scholar 

  28. P.J. Angiolillo, K. Susumu, H.T. Uyeda, V.S.-Y. Lin, R. Shediac, M.J. Therien, Synthetic Metals 116, 247–253 (2001)

    Article  Google Scholar 

  29. O.I. Gnezdilov, A.E. Maambetov, A.A. Obynochny, S.K.M. Salikhov, Appl. Magn. Reson. 25, 157–198 (2003)

    Article  Google Scholar 

  30. S. Yamauchi, M. Tanabe, K. Takahashi, I.S.M. Saiful, H. Matsuoka, Y. Ohba, Appl. Magn. Reson. 37, 317–323 (2010)

    Article  Google Scholar 

  31. S. Yamauchi, K. Takahashi, S.M. Saiful Islam, Y. Ohba, V. Tarasov, J. Phys. Chem. B. 114, 14559–14563 (2010)

    Article  Google Scholar 

  32. V.S. Tyurin, E.A. Mikhalitsyna, A.S. Semeikin, I.P. Beletskaya, Macroheterocycles 8(4), 358–365 (2015)

    Article  Google Scholar 

  33. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  34. F. Neese, Comput. Mol. Sci. 2(1), 73–78 (2012)

    Article  Google Scholar 

  35. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  36. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  37. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571–2577 (1992)

    Article  ADS  Google Scholar 

  38. C.H.W.M. Kay, G. Elger, K. Möbius. Phys. Chem. Chem. Phys. 1, 3999–4002 (1999)

    Article  Google Scholar 

  39. A.A. Sukhanov, K.B. Konov, K.M. Salikhov, V.K. Voronkova, E.A. Mikhalitsyna, V.S. Tyurin, Appl. Magn. Reson. 46(11), 1199–1220 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part of EPR studies by the Russian Foundation for Basic Research (project no. 16-03-00586) and Program of the Presidium of the Russian Academy of Sciences (no. 1.26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Voronkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanov, A.A., Savostina, L.I., Voronkova, V.K. et al. Time-Resolved and Pulse EPR Study of Conjuncted Porphyrin Trimer. Appl Magn Reson 47, 1295–1304 (2016). https://doi.org/10.1007/s00723-016-0831-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0831-3

Keywords

Navigation