Skip to main content
Log in

Region-Specific Susceptibilities to Cuprizone-Induced Demyelination of C57BL/6 Mouse: In vivo T2WI and DTI Studies at 7.0T

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The cuprizone (CPZ) mouse model of demyelination was recognized and used to explore multiple sclerosis (MS)-like brain lesions. In this study, we assessed CPZ-treated mice using T2-weighted imaging and diffusion tensor imaging (DTI). C57BL/6 mice treated with 2 weeks of 0.2 % CPZ-containing diet (n = 10) and regular chow diet (n = 10) were scanned with a 7.0 T MRI scanner (Agilent, USA), respectively, using fast spin-echo and fast spin-echo DTI sequences. The normalized T2 signal intensity (normalized to the cerebrospinal fluid) was calculated and fractional anisotropy (FA value), mean diffusivity, axial diffusivity and radial diffusivity were measured in the brain region of the cerebral cortex (CTX), caudate putamen (CP), hippocampus (HP) and thalamus (TH). Compared with controls, increased normalized T2 signal intensities and reduced FA values (p < 0.05) were observed in the CTX, HP and CP (p < 0.01), but not in TH in cuprizone-fed mice. In the regions of reduced FA values, an increase in mean diffusivity (p < 0.05) and radial diffusivity (p < 0.05) was also found. Significant decreased axial diffusivity was only observed in CTX (p < 0.05). DTI is sensitive to detecting cuprizone-induced demyelination of C57BL/6 mice. This study suggests that CTX, HP and CP are more susceptible to cuprizone-induced demyelination than TH. Our results also indicate that the decrease of FA value may be more likely due to increased radial diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.J. Yang, H. Wang, Y. Zhang, L. Xiao, R.W. Clough, R. Browning, X.M. Li, H. Xu, Brain Res. 1270, 121–130 (2009)

    Article  Google Scholar 

  2. M.F. Stidworthy, S. Genoud, U. Suter, N. Mantei, R.J. Franklin, Brain Pathol. 13(3), 329–339 (2003)

    Article  Google Scholar 

  3. K. Hoffmann, M. Lindner, I. Gröticke, M. Stangel, W. Löscher, Exp. Neurol. 210(2), 308–321 (2008)

    Article  Google Scholar 

  4. M. Kipp, T. Clarner, J. Dang, S. Copray, C. Beyer, Acta Neuropathol. 118(6), 723–736 (2009)

    Article  Google Scholar 

  5. G.K. Matsushima, P. Morell, Brain Pathol. 11(1), 107–116 (2001)

    Article  Google Scholar 

  6. L. Liu, A. Belkadi, L. Darnall, T. Hu, C. Drescher, A.C. Cotleur, D. Padovani-Claudio, T. He, K. Choi, T.E. Lane, Nat. Neurosci. 13(3), 319–326 (2010)

    Article  Google Scholar 

  7. R. Bakshi, G.J. Hutton, J.R. Miller, E.-W. Radue, Neurology 63(11 suppl 5), S3–S11 (2004)

    Article  Google Scholar 

  8. F. Barkhof, Curr. Opin. Neurol. 15(3), 239–245 (2002)

    Article  Google Scholar 

  9. S. Boretius, I. Gadjanski, I. Demmer, M. Bähr, R. Diem, T. Michaelis, J. Frahm, Neuroimage 41(2), 323–334 (2008)

    Article  Google Scholar 

  10. D. Werring, D. Brassat, A. Droogan, C. Clark, M. Symms, G. Barker, D. MacManus, A. Thompson, D. Miller, Brain 123(8), 1667–1676 (2000)

    Article  Google Scholar 

  11. J. Zhang, M.V. Jones, M.T. McMahon, S. Mori, P.A. Calabresi, Magn. Reson. Med. 67(3), 750–759 (2012)

    Article  Google Scholar 

  12. P.J. Basser, C. Pierpaoli, J. Magn. Reson. Ser B 111(3), 209–219 (1996)

    Article  Google Scholar 

  13. J. Neil, J. Miller, P. Mukherjee, P.S. Hüppi, NMR Biomed. 15(7–8), 543–552 (2002)

    Article  Google Scholar 

  14. C. Pierpaoli, A. Barnett, S. Pajevic, R. Chen, L. Penix, A. Virta, P. Basser, Neuroimage 13(6), 1174–1185 (2001)

    Article  Google Scholar 

  15. M.A. Horsfield, D.K. Jones, NMR Biomed. 15(7–8), 570–577 (2002)

    Article  Google Scholar 

  16. S.K. Song, S.W. Sun, M.J. Ramsbottom, C. Chang, J. Russell, A.H. Cross, Neuroimage 17(3), 1429–1436 (2002)

    Article  Google Scholar 

  17. S.K. Song, S.W. Sun, W.K. Ju, S.-J. Lin, A.H. Cross, A.H. Neufeld, Neuroimage 20(3), 1714–1722 (2003)

    Article  Google Scholar 

  18. P.N. Koutsoudaki, T. Skripuletz, V. Gudi, D. Moharregh-Khiabani, H. Hildebrandt, C. Trebst, M. Stangel, Neurosci. Lett. 451(1), 83–88 (2009)

    Article  Google Scholar 

  19. P. Chandran, J. Upadhyay, S. Markosyan, A. Lisowski, W. Buck, C.L. Chin, G. Fox, F. Luo, M. Day, Neuroscience 202, 446–453 (2012)

    Article  Google Scholar 

  20. O. Yu, J. Steibel, Y. Mauss, B. Guignard, B. Eclancher, J. Chambron, D. Grucker, Magn. Reson. Imaging 22(8), 1139–1144 (2004)

    Article  Google Scholar 

  21. Ø. Torkildsen, L. Brunborg, K.M. Myhr, L. Bø, Acta Neurol. Scand. 117(s188), 72–76 (2008)

    Article  Google Scholar 

  22. Q.Z. Wu, Q. Yang, H.S. Cate, D. Kemper, M. Binder, H.X. Wang, K. Fang, M.J. Quick, M. Marriott, T.J. Kilpatrick, J. Magn. Reson. Imaging 27(3), 446–453 (2008)

    Article  Google Scholar 

  23. M. Qiao, K.L. Malisza, M.R. Del Bigio, U.I. Tuor, Stroke 32(4), 958–963 (2001)

    Article  Google Scholar 

  24. M. Hiremath, Y. Saito, G. Knapp, J.Y. Ting, K. Suzuki, G. Matsushima, J. Neuroimmunol. 92(1), 38–49 (1998)

    Article  Google Scholar 

  25. L.A. Harsan, J. Steibel, A. Zaremba, A. Agin, R. Sapin, P. Poulet, B. Guignard, N. Parizel, D. Grucker, N. Boehm, J. Neurosci. 28(52), 14189–14201 (2008)

    Article  Google Scholar 

  26. J.W. Kesterson, W.W. Carlton, Exp. Mol. Pathol. 15(1), 82–96 (1971)

    Article  Google Scholar 

  27. E. Bergers, J. Bot, C. De Groot, C. Polman, G.L. à Nijeholt, J. Castelijns, P. Van Der Valk, F. Barkhof, Neurology 59(11), 1766–1771 (2002)

    Article  Google Scholar 

  28. M. Rovaris, A. Gass, R. Bammer, S. Hickman, O. Ciccarelli, D. Miller, M. Filippi, Neurology 65(10), 1526–1532 (2005)

    Article  Google Scholar 

  29. M. Inglese, M. Bester, NMR Biomed. 23(7), 865–872 (2010)

    Article  Google Scholar 

  30. M. Filippi, M. Cercignani, M. Inglese, M. Horsfield, G. Comi, Neurology 56(3), 304–311 (2001)

    Article  Google Scholar 

  31. M. Horsfield, H. Larsson, D. Jones, A. Gass, J. Neurol. Neurosurg. Psychiatry 64, S80–S84 (1998)

    Google Scholar 

  32. D. Werring, C. Clark, G. Barker, A. Thompson, D. Miller, Neurology 52(8), 1626–1627 (1999)

    Article  Google Scholar 

  33. M. Xie, J.E. Tobin, M.D. Budde, C.-I. Chen, K. Trinkaus, A.H. Cross, D.P. McDaniel, S.-K. Song, R.C. Armstrong, J. Neuropathol. Exp. Neurol. 69(7), 704 (2010)

    Article  Google Scholar 

  34. S.K. Song, J. Yoshino, T.Q. Le, S.J. Lin, S.-W. Sun, A.H. Cross, R.C. Armstrong, Neuroimage 26(1), 132–140 (2005)

    Article  Google Scholar 

  35. S.W. Sun, H.F. Liang, K. Trinkaus, A.H. Cross, R.C. Armstrong, S.K. Song, Magn. Reson. Med. 55(2), 302–308 (2006)

    Article  Google Scholar 

  36. C.A. DeBoy, J. Zhang, S. Dike, I. Shats, M. Jones, D.S. Reich, S. Mori, T. Nguyen, B. Rothstein, R.H. Miller, Brain 130(8), 2199–2210 (2007)

    Article  Google Scholar 

  37. M.J. Lowe, C. Horenstein, J.G. Hirsch, R.A. Marrie, L. Stone, P.K. Bhattacharyya, A. Gass, M.D. Phillips, Neuroimage 32(3), 1127–1133 (2006)

    Article  Google Scholar 

  38. S. Roosendaal, J. Geurts, H. Vrenken, H. Hulst, K. Cover, J. Castelijns, P.J. Pouwels, F. Barkhof, Neuroimage 44(4), 1397–1403 (2009)

    Article  Google Scholar 

  39. S. Boretius, A. Escher, T. Dallenga, C. Wrzos, R. Tammer, W. Brück, S. Nessler, J. Frahm, C. Stadelmann, Neuroimage 59(3), 2678–2688 (2012)

    Article  Google Scholar 

  40. J. Shamy, D. Carpenter, S. Fong, E. Murray, C. Tang, P. Hof, P. Rapp, Hippocampus 20(8), 906–910 (2010)

    Google Scholar 

  41. A. Giorgio, J. Palace, H. Johansen-Berg, S.M. Smith, S. Ropele, S. Fuchs, M. Wallner-Blazek, C. Enzinger, F. Fazekas, J. Magn. Reson. Imaging 31(2), 309–316 (2010)

    Article  Google Scholar 

  42. C. Pierpaoli, P.J. Basser, Magn. Reson. Med. 36(6), 893–906 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported in part by the grants from National High Technology Research and Development Program of China (2014AA021101), and National Natural Science Foundation of China (grant number: 30930027).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-hua Wu.

Additional information

T. Nie and G. Yan are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Tt., Yan, G., Jia, Yl. et al. Region-Specific Susceptibilities to Cuprizone-Induced Demyelination of C57BL/6 Mouse: In vivo T2WI and DTI Studies at 7.0T. Appl Magn Reson 45, 759–769 (2014). https://doi.org/10.1007/s00723-014-0553-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0553-3

Keywords

Navigation