Skip to main content
Log in

Investigations of the Spin-Hamiltonian Parameters for the Rhombic Mo5+ Centers in Ca1−x Y x MoO4 Crystal

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The spin-Hamiltonian parameters (g factors g i and hyperfine structure constants A i , where i = x, y, z) of the rhombic Mo5+ center in Ca1−x Y x MoO4 crystal are calculated from the high-order perturbation formulas based on the two-mechanism model for the rhombic d1 tetrahedral clusters with the ground state |d z 2〉. In these formulas, besides the contributions due to the widely applied crystal-field (CF) mechanism concerning CF excited states, those due to the charge-transfer (CT) mechanism (which is omitted in CF theory) concerning CT excited states are considered. The calculated results are in reasonable agreement with the experimental values. The calculations show that because of the great relative importance of CT mechanism for the components of spin-Hamiltonian parameter along x and y axes, the accurate and complete calculations of spin-Hamiltonian parameters for Mo5+ and other high valence state dn ions in crystals should take account of both the CF and CT mechanisms. The defect model of the rhombic Mo5+ center is also confirmed from the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Malka, J.M. Tatibouet, J. Catal. 175, 204 (1998)

    Article  Google Scholar 

  2. L. Zhen, W.S. Wang, C.Y. Xu, W.Z. Shao, M.M. Ye, Z.L. Chen, Scr. Mater. 58, 461 (2008)

    Article  ADS  Google Scholar 

  3. A.V. Veresnikova, I.R. Barabanov, B.K. Lubsandorzhiev, R.V. Poleshchuk, B.A.M. Shaibonov, E.E. Vyatchin, V.N. Kornoukhov, Instrum. Exp. Tech. 52, 33 (2009)

    Article  Google Scholar 

  4. V.B. Mikhailik, H. Kraus, Phys. Status Solidi B247, 1583 (2010)

    Article  Google Scholar 

  5. A.A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer-Verlay, Berlin, 1981)

    Book  Google Scholar 

  6. G.S.R. Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 15562 (2012)

    Article  Google Scholar 

  7. G.R. Dillip, S.J. Dhoble, B.D.P. Raju, Opt. Mater. 35, 2261 (2013)

    Article  ADS  Google Scholar 

  8. A. Xie, X.M. Yuan, S.J. Hai, J.J. Wang, F.X. Wang, L. Li, J. Phys. D 42, 105107 (2009)

    Article  ADS  Google Scholar 

  9. J.H. Zhang, L. Wang, Y. Jin, X. Zhang, Z.D. Hao, X.J. Wang, J. Lumin. 131, 429 (2011)

    Article  Google Scholar 

  10. D. Piwowarsha, A. Ostrowski, I. Stefaniuk, S.M. Kaczmarek, C. Rudowicz, Opt. Mater. 35, 2296 (2013)

    Article  ADS  Google Scholar 

  11. J.P. Sattler, J. Nemarich, Phys. Rev. B1, 4249 (1970)

    Article  ADS  Google Scholar 

  12. I. Trabelsi, M. Dammak, R. Maalej, M. Kamoun, Phys. B 406, 315 (2011)

    Article  ADS  Google Scholar 

  13. D.A. Spasskii, V.N. Kolobanov, V.V. Mikhailin, LYu. Berezovskaya, L.I. Ivleva, I.S. Voronina, Opt. Spectrosc. 106, 556 (2009)

    Article  ADS  Google Scholar 

  14. M. Greenblatt, P. Strobel, J.H. Pifer, J. Chem. Phys. 74, 6580 (1981)

    Article  ADS  Google Scholar 

  15. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970)

    Google Scholar 

  16. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  17. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)

    Google Scholar 

  18. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)

    Google Scholar 

  19. J.A. Aramburu, M. Moreno, Solid State Commun. 62, 513 (1987)

    Article  ADS  Google Scholar 

  20. W.C. Zheng, W.Q. Yang, Y. Mei, Mol. Phys. 107, 2245 (2009)

    Article  ADS  Google Scholar 

  21. W.C. Zheng, Y. Mei, L. He, Phil. Mag. Lett. 89, 573 (2009)

    Article  ADS  Google Scholar 

  22. D. Ball, J.E. Lowther, Phys. Lett. A 61, 333 (1977)

    Article  ADS  Google Scholar 

  23. B.R. McGarvey, J. Phys. Chem. 71, 51 (1967)

    Article  Google Scholar 

  24. M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992)

    Article  ADS  Google Scholar 

  25. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  26. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)

    Article  ADS  Google Scholar 

  27. W.C. Zheng, Phys. B 215, 255 (1995)

    Article  ADS  Google Scholar 

  28. E. Gurmen, E. Daniels, J.S. King, J. Chem. Phys. 55, 1093 (1971)

    Article  ADS  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  30. Y. Mei, W.C. Zheng, H.G. Liu, Phys. B 430, 27 (2013)

    Article  ADS  Google Scholar 

  31. R. Valiente, F. Rodriguez, M.T. Barriuso, C. Sousa, C. de Graat, J.A. Aramburu, M. Moreno, High Press. Res. 22, 475 (2002)

    Article  ADS  Google Scholar 

  32. J.A. Aramburu, M. Moreno, A, Bencini. Chem. Phys. Lett. 140, 462 (1987)

    Article  ADS  Google Scholar 

  33. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)

    Article  ADS  Google Scholar 

  34. B.G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965)

    Google Scholar 

  35. Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys.: Condens. Matter 16, 348 (2004)

    Google Scholar 

  36. W.L. Feng, W.Q. Yang, W.C. Zheng, X.M. Li, J. Alloys Compd. 57, 498 (2010)

    Google Scholar 

  37. W.C. Zheng, W. Fang, Y. Mei, J. Appl. Phys. 101, 053911 (2007)

    Article  ADS  Google Scholar 

  38. W.C. Zheng, Y. Mei, W.Q. Yang, Philos. Mag. 28, 1621 (2009)

    Article  ADS  Google Scholar 

  39. W.L. Yu, M.G. Zhao, Phys. Rev. B 37, 9254 (1988)

    Article  ADS  Google Scholar 

  40. H. Biederbick, A. Hofstaetter, A. Scharmann, Phys. Status Solidi B89, 449 (1978)

    Article  ADS  Google Scholar 

  41. H. Klein, U. Scherz, M. Schulz, H. Setyono, K. Wisznewski, Z. Phys. B Condensed Matter 28, 149 (1977)

    ADS  Google Scholar 

  42. T. Gregorkiewicz, S.W. Biernacki, J. Phys. C 13, 1285 (1980)

    Article  ADS  Google Scholar 

  43. W.C. Zheng, S.Y. Wu, J. Phys.: Condens. Matter 8, 4539 (1996)

    ADS  Google Scholar 

  44. W.C. Zheng, S.Y. Wu, Phys. Rev. B 54, 1117 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Initial Foundation of Mianyang Normal University (Project No. MQD2008A001, MQD2011A05), the Key Project of Sichuan Provincial Science and Technology Department (Project No. 2012SZZ025, 2012JY0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Chen Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, RM., Mei, Y., Zheng, WC. et al. Investigations of the Spin-Hamiltonian Parameters for the Rhombic Mo5+ Centers in Ca1−x Y x MoO4 Crystal. Appl Magn Reson 45, 723–730 (2014). https://doi.org/10.1007/s00723-014-0551-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0551-5

Keywords

Navigation