Skip to main content
Log in

EPR and Optical Absorption Study of Cr3+-Doped Dipotassium Tetrachloropalladate

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

X-band electron paramagnetic resonance (EPR) study of Cr3+-doped dipotassium tetrachloropalladate single crystal is done at liquid nitrogen temperature. EPR spectrum shows two sites. The spin-Hamiltonian parameters have been evaluated by employing hyperfine resonance lines observed in EPR spectra for different orientations of crystal in externally applied magnetic field. The values of spin-Hamiltonian and zero-field splitting (ZFS) parameters of Cr3+ ion-doped DTP for site I are: g x  = 2.096 ± 0.002, g y  = 2.167 ± 0.002, g z  = 2.220 ± 0.002, D = (89 ± 2) × 10−4 cm−1, E = (16 ± 2) × 10−4 cm−1. EPR study indicates that Cr3+ ion enters the host lattice substitutionally replacing K+ ion and local site symmetry reduces to orthorhombic. Optical absorption spectra are recorded at room temperature. From the optical absorption study, the Racah parameters (B = 521 cm−1, C = 2,861 cm−1), cubic crystal field splitting parameter (Dq = 1,851 cm−1) and nephelauxetic parameters (h = 2.06, k = 0.21) are determined. These parameters together with EPR data are used to discuss the nature of bonding in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  2. B. Aktas, S. Guner, F. Yildiz, A. Nateprov, A. Siminel, L. Kulyuk, J. Magn. Magn. Mater. 258, 409–412 (2003)

    Article  ADS  Google Scholar 

  3. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  4. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications (Wiley, New York, 2000)

    Google Scholar 

  5. E.M. Brown, J. Am. Leather Chem. Assoc. 92, 225–233 (1997)

    Google Scholar 

  6. S.C. Moss, R.E. Newnhem, Zeitschriftfur Kristallographie: Cryst. Mater. 120, 359–363 (2010)

    Article  ADS  Google Scholar 

  7. B.M. Weckhuysen, R.A. Schoonheydt, Catal. Today 51, 215–221 (1999)

    Article  Google Scholar 

  8. M. V. E. Twigg, Catalyst Handbook 1989

  9. C. Rhodes, G.J. Huchings, A.M. Ward, Catal. Today 23, 43–58 (1995)

    Article  Google Scholar 

  10. B. Karmakar, J. Benerji, Tetrahedron Lett. 51, 2748–2750 (2010)

    Article  Google Scholar 

  11. N.Y. Fomina, O.A. Chaplygina, A.D. Shebaldova, V.B. Borodulin, Russ. J. Gen. Chem. 72, 704–709 (2002)

    Article  Google Scholar 

  12. R.B. Martin, Acc. Chem. Res. 18, 32–38 (1985)

    Article  Google Scholar 

  13. H. Takazawa, S. Ohba, Y. Saito, Acta Cryst. B44, 580–585 (1988)

    Article  Google Scholar 

  14. S. Dhanuskodi, A.P. Jeyakumari, Mater. Chem. Phys. 87, 292–296 (2004)

    Article  Google Scholar 

  15. A. Well, J.R. Bolton, J.E. Wertz, EPR: Elementary Theory and Practical Applications (Wiley, NewYork, 1994)

    Google Scholar 

  16. N.O. Gopal, K.V. Narsimhulu, C.S. Sunandana, J.L. Rao, Phys. B 348, 335–340 (2004)

    Article  ADS  Google Scholar 

  17. C. Rudowicz, R. Bramley, J. Chem. Phys. 83, 5192–5198 (1985)

    Article  ADS  Google Scholar 

  18. F.B.I. Cook, M.J.A. Smith, J. Phys. C: Solid State Phys. 7, 2353–2364 (1974)

    Article  ADS  Google Scholar 

  19. H.K. Perkins, M.J. Sienko, J. Chem. Phys. 46, 2398–2402 (1967)

    Article  ADS  Google Scholar 

  20. D.S. Schonland, Proc. Phys. Soc. 73, 788–792 (1959)

    Article  ADS  Google Scholar 

  21. S.K. Misra, S. Subramanian, J. Phys. C: Solid State Phys. 15, 7107–7199 (1982)

    Article  Google Scholar 

  22. W.C. Zheng, S.Y. Wu, D. Hui-Ning, Z. Jain, Spectrochim. Acta A 58, 537–541 (2002)

    Article  ADS  Google Scholar 

  23. M. Haouari, M. Ajroud, H. Bn Ouada, H. Maaref, A. Brenier, C. Carapon, Phys. Stat. Sol. B 215, 1165–1177 (1999)

    Article  ADS  Google Scholar 

  24. A.V. Chandrasekhar, R.V.S.S. Ravikumar, B.J. Reddy, P. Sambasiva Rao, Glass Technol. 43, 32–33 (2002)

    Google Scholar 

  25. M. Haouariy, H. Ben Ouaday, H. Maarefy, H. Hommelz, A.P. Legrandz, J. Phys.: Condens. Matter 9, 6711–6718 (1997)

    ADS  Google Scholar 

  26. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  27. H. Watanabe, J. Phys. Chem. Solids 25, 1471–1475 (1980)

    Article  ADS  Google Scholar 

  28. G.L. McPherson, K.O. Devaney, J. Phys. C: Solid State Phys. 13, 1735–1743 (1980)

    Article  ADS  Google Scholar 

  29. C. Chow, K. Chang, R.D. Willett, J. Chem. Phys. 59, 2629–2641 (1973)

    Article  ADS  Google Scholar 

  30. J. Hubbard, D.E. Rimmer, F.R.A. Hopgood, Proc. Phys. Soc. 88, 13–36 (1966)

    Article  ADS  Google Scholar 

  31. J.L. Patel, J.J. Davies, B.C. Cavenett, H. Takeuchi, K. Horai, J. Phys. C 9, 129–138 (1976)

    Article  ADS  Google Scholar 

  32. J. Owen, J.H.M. Thornley, Rep. Prog. Phys. 29, 675–728 (1966)

    Article  ADS  Google Scholar 

  33. F. Keffer, T. Oguchi, W. O’Sullivan, J. Yamashita, Phys. Rev. 115, 1553–1561 (1959)

    Article  ADS  Google Scholar 

  34. T.H. Yeom, C. Rudowicz, S.H. Choh, J. Korean Phys. Soc. 41, 756–762 (2002)

    Google Scholar 

  35. C. Rudowicz, Y.Y. Zhao, W.L. Yu, J. Phys. Chem. Solids 53, 1227–1236 (1992)

    Article  ADS  Google Scholar 

  36. T. Krigas, M.T. Rogers, J. Chem. Phys. 54, 4769–4775 (1971)

    Article  ADS  Google Scholar 

  37. B.N. Figgis, Introduction to Ligand Fields (Wiley, New York, 1976)

    Google Scholar 

  38. S.L. Reddy, T. Endo, G. Siva, in Advanced Aspects of Spectroscopy, ed. by M. Akhyar Farrukh (InTech, Rijeka, Croatia, 2012), pp. 4–48

  39. Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753–766 (1954)

    Article  ADS  Google Scholar 

  40. F. Rasheed, K.P. O’ Donnel, B. McCollum, B. Henderson, D.B. Hollis, J. Phys. Condens. Matter 3, 1915–1930 (1991)

  41. C.E. Moore, Atomic Energy Levels, Vol. II (Chromium through Niobium), Circular of the National Bureau of Standards 467, U.S. Government Printing Office, Washington, DC, 1952

  42. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, Cambridge, 1961)

    MATH  Google Scholar 

  43. R.V.S.S.N. Ravikumar, A.V. Chandrasekhar, S.N. Rao, N. Madhu, B.J. Reddy, Cryst. Res. Technol. 34 911–914, (1999)

  44. W. Ryba-Romanowski, S. Gloab, W.A. Pisarski, D. Podsiadla, Z. Czapla, Chem. Phys. Lett. 264, 323–326 (1997)

    Article  ADS  Google Scholar 

  45. W. Seeder, D. Ehrt, D. Eberdorff-Heidepriem, J. Non-Cryst Solids 171, 94–104 (1994)

    Article  ADS  Google Scholar 

  46. C.K. Jorgensen, Absorption Spectra and Chemical Bonding (Plenum, Oxford, 1962), p. 113

    Google Scholar 

  47. G.M. Cole Jr, B.B. Garret, Inorg. Chem. 9, 1898–1902 (1970)

    Article  Google Scholar 

  48. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications, vol. 2, (Wiley-VCH, 2000)

  49. M. Haouari, H.B. Ouada, H. Maaref, H. Hommel, A.P. Legrend, J. Phys.: Condens. Matter 9, 6711–6718 (1997)

    ADS  Google Scholar 

  50. R.B. Kannan, A. Chandramohan, J.C. Sekar, M.A. Kandhaswamy, Cryst. Res. Technol. 42, 595–600 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Head, SAIF, I.I.T. Mumbai, Powai, Mumbai for providing the facility of EPR spectrometer. One of the authors, Shri Devi Pandey, is grateful to the Head, Department of Physics, University of Allahabad, Allahabad for providing departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kripal.

Appendix

Appendix

Angular variation of the field position EPR fine structure lines for orthorhombic spin Hamiltonian.

(i) For xy-plane

M = 3/2↔1/2

$$B = B_{ 0} + [D{ - 3}E ( 2 {\text{Cos}}^{ 2} \theta - 1 ) ]-\left( {\frac{ 2 4}{{{\text{B}}_{ 0} }}} \right)E^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = 1/2↔−1/2

$$B = B_{ 0} + \left( {\frac{3}{{4B_{0} }}} \right) [D- 3E ( 2 {\text{Cos}}^{ 2} \theta - 1 ) ]+ \left( {\frac{ 2 4}{{{\text{B}}_{ 0} }}} \right)E^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = −1/2↔−3/2

$${\text{B}} = {\text{B}}_{ 0} - [ {\text{D - 3E(2Cos}}^{ 2} \theta { - 1)] - }\left( {\frac{ 2 4}{{{\text{B}}_{ 0} }}} \right)E^{2} {\rm Sin}^{2} \theta {\rm Cos}^{2} \theta$$

(ii) For yz-plane

M = 3/2↔1/2

$$B = B_{ 0} - [D ( 3 {\text{Cos}}^{ 2} \theta - 1 )- 3E ( 1-{\text{Cos}}^{ 2} \theta ) ]-\left( {\frac{ 6}{{B_{ 0} }}} \right)(D + E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = 1/2↔−1/2

$$B = B_{ 0} + \left( {\frac{ 3}{{ 4 {\text{B}}_{ 0} }}} \right) [D\;{\text{Sin}}^{2} \theta -E ( 1+ {\text{Cos}}^{ 2} \theta ) ]+ \left( {\frac{ 6}{{B_{ 0} }}} \right)(D + E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = −1/2↔−3/2

$$B = B_{ 0} + [D ( 3 {\text{Cos}}^{ 2} \theta - 1 ) { - 3}E ( 1-{\text{Cos}}^{ 2} \theta ) ]-\left( {\frac{ 6}{{B_{ 0} }}} \right)(D + E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

(iii) For zx-plane

M = 3/2↔1/2

$$B = B_{ 0} - [D ( 3 {\text{Cos}}^{ 2} \theta - 1 )+ 3E ( 1-{\text{Cos}}^{ 2} \theta ) ]-\left( {\frac{ 6}{{B_{ 0} }}} \right)(D - E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = 1/2↔-1/2

$$B = B_{ 0} - \left( {\frac{ 3}{{ 4B_{ 0} }}} \right) [D\;{\text{Sin}}^{2} \theta + E ( 1+ {\text{Cos}}^{ 2} \theta ) ]-\left( {\frac{ 6}{{{\text{B}}_{ 0} }}} \right)(D - E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

M = −3/2↔−1/2

$$B = B_{ 0} + [D ( 3\;{\text{Cos}}^{ 2} \theta - 1 )+ 3E ( 1-{\text{Cos}}^{ 2} \theta ) ]-\left( {\frac{ 6}{{B_{ 0} }}} \right)(D - E)^{2} {\text{Sin}}^{2} \theta \;{\text{Cos}}^{2} \theta$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kripal, R., Pandey, S.D. EPR and Optical Absorption Study of Cr3+-Doped Dipotassium Tetrachloropalladate. Appl Magn Reson 45, 731–742 (2014). https://doi.org/10.1007/s00723-014-0550-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0550-6

Keywords

Navigation