Skip to main content
Log in

Optimization of an 8-Channel Loop-Array Coil for a 7 T MRI System with the Guidance of a Co-Simulation Approach

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Minimizing coupling between coil elements is technically challenging in designing large-sized, volume-type phased-array coils for human head imaging at ultrahigh fields, e.g., 7 T. As a widely used decoupling method, the capacitive decoupling method has shown excellent performance for loop array. However, building a multi-channel loop array with capacitive decoupling method is laborious that tuning frequency and matching of one coil element will affect adjacent elements and even next adjacent elements. In this study, we made an 8-channel loop-array transmit/receive radio-frequency coil on a 7 T magnetic resonance imaging system with the guidance of frequency domain three-dimensional electromagnetic and radio-frequency circuit co-simulation. The position of decoupling capacitors was investigated and values of all capacitors were predicted from co-simulation. The co-simulation approach cost about 2 days and the error of the predicted and practical capacitance was <5 %. To demonstrate the accuracy of simulation, we evaluated the simulated and measured S-parameter matrixes and B + 1 profiles in a birdcage-like excitation mode on a cylindrical water phantom. In addition, B + 1 maps and images of human head were shown with the fabricated coil. To demonstrate the parallel imaging performance of this coil array, GRE images using GRAPPA acceleration with the reduction factor R of 1, 2, 3, and 4 were acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.T. Vaughan, M. Garwood, C.M. Collins, W. Liu, L. DelaBarre, G. Adriany, P. Andersen, H. Merkle, R. Goebel, M.B. Smith, K. Ugurbil, Magn. Reson. Med. 24, 24–30 (2001)

    Article  Google Scholar 

  2. T. Vaughan, L. DelaBarre, C. Snyder, J. Tian, C. Akgun, D. Shrivastava, W. Liu, C. Olson, G. Adriany, J. Strupp, P. Andersen, A. Gopinath, P.F. van de Moortele, M. Garwood, K. Ugurbil, Magn. Reson. Med. 56, 1274–1282 (2006)

    Article  Google Scholar 

  3. C.M. Collins, Q.X. Yang, J.H. Wang, X. Zhang, H. Liu, S. Michaeli, X.H. Zhu, G. Adriany, J.T. Vaughan, P. Anderson, H. Merkle, K. Ugurbil, M.B. Smith, W. Chen, Magn. Reson. Med. 47, 1026–1028 (2002)

    Article  Google Scholar 

  4. Y. Zhu, Magn. Reson. Med. 51, 775–784 (2004)

    Article  Google Scholar 

  5. K. Setsompop, L.L. Wald, V. Alagappan, B. Gagoski, F. Hebrank, U. Fontius, F. Schmitt, E. Adalsteinsson, Magn. Reson. Med. 56, 1163–1171 (2006)

    Article  Google Scholar 

  6. G. Adriany, P.F. Van de Moortele, F. Wiesinger, S. Moeller, J.P. Strupp, P. Andersen, C. Snyder, X. Zhang, W. Chen, K.P. Pruessmann, P. Boesiger, T. Vaughan, K. Ugurbil, Magn. Reson. Med. 53, 434–445 (2005)

    Article  Google Scholar 

  7. D.K. Sodickson, W.J. Manning, Magn. Reson. Med. 38, 591–603 (1997)

    Article  Google Scholar 

  8. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47, 1202–1210 (2002)

    Article  Google Scholar 

  9. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  10. Y. Pang, D.B. Vigneron, X. Zhang, Magn. Reson. Med. 67, 965–978 (2012)

    Article  Google Scholar 

  11. D.K. Sodickson, C.A. McKenzie, M.A. Ohliger, E.N. Yeh, M.D. Price, Magma 13, 158–163 (2002)

    Article  Google Scholar 

  12. C. Von Morze, J. Tropp, S. Banerjee, D. Xu, K. Karpodinis, L. Carvajal, C.P. Hess, P. Mukherjee, S. Majumdar, D.B. Vigneron, Concepts Magn. Reson. Part B Magn. Reson. Eng. 31B, 37–43 (2007)

    Article  Google Scholar 

  13. B. Wu, P. Qu, C. Wang, J. Yuan, G.X. Shen, Concepts Magn. Reson. Part B Magn. Reson. Eng. 31B, 116–126 (2007)

    Article  Google Scholar 

  14. B. Wu, X. Zhang, P. Qu, G.X. Shen, Magn. Reson. Imaging 25, 418–424 (2007)

    Article  Google Scholar 

  15. Z. Zuo, J. Park, Y. Li, Z. Li, X. Yan, Z. Zhang, Y. Zhuo, Z.H. Cho, X.J. Zhou, R. Xue, in Proceedings 20th Scientific Meeting, International Society for Magnetic Resonance in Medicine (2012), p. 2804

  16. H. Jeong, K.N. Kim, S.M. Hong, J.H. Park, M.K. Woo, Y.B. Kim, Z.H. Cho, in Proceedings 21th Scientific Meeting, International Society for Magnetic Resonance in Medicine (2013), p. 4351

  17. M. Kozlov, R. Turner, in Proceedings of the PIERS (March 2012), pp. 1323–1327

  18. J.M. Jin, J. Chen, W.C. Chew, H. Gan, R.L. Magin, P.J. Dimbylow, Phys. Med. Biol. 41, 2719–2738 (1996)

    Article  Google Scholar 

  19. J. Jin, J. Chen, Magn. Reson. Med. 38, 953–963 (1997)

    Article  Google Scholar 

  20. T.S. Ibrahim, R. Lee, B.A. Baertlein, Y. Yu, P.M. Robitaille, Magn. Reson. Imaging 18, 835–843 (2000)

    Article  Google Scholar 

  21. C.M. Collins, S. Li, M.B. Smith, Magn. Reson. Med. 40, 847–856 (1998)

    Article  Google Scholar 

  22. J. Chen, Z. Feng, J.M. Jin, IEEE Trans. Biomed. Eng. 45, 650–659 (1998)

    Article  Google Scholar 

  23. R. Zhang, Y. Xing, J. Nistler, J. Wang, in Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine (2009), p. 3040

  24. R.A. Lemdiasov, A.A. Obi, R. Ludwig, Concepts Magn. Reson. Part A 38A, 133–147 (2011)

    Article  Google Scholar 

  25. M. Kozlov, R. Turner, J. Magn. Reson. 200, 147–152 (2009)

    Article  ADS  Google Scholar 

  26. M. Kozlov, R. Turner, Prog. Electromagn. Res. Symp. Proc. 6, 395–399 (2010)

    Google Scholar 

  27. D.I. Hoult, Concepts Magn. Reson. 12, 173–187 (2000)

    Article  Google Scholar 

  28. M. Kozlov, R. Turner, Prog. Electromagn. Res. Symp. Proc. 7, 426–430 (2011)

    Google Scholar 

  29. U. Klose, Med. Phys. 19, 1099–1104 (1992)

    Article  ADS  Google Scholar 

  30. V.L. Yarnykh, Magn. Reson. Med. 57, 192–200 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge helpful discussions with Dr. Mikhail Kozlov (Max Planck Institute, Leipzig, Germany). We thank Mr. ZhiGuang Li and Dr. Zhentao Zuo (Institute of Biophysics, Chinese Academy of Sciences) for providing the coil acrylic former and prototype of the coil design, and ANSYS Company for providing a temporary HFSS license. This work was supported in part by Chinese National Major Scientific Equipment R&D Project (Grant Number ZDYZ2010-2), the Ministry of Science and Technology (MOST) of China (Grant Number 2012CB825500), the MOST Innovation Method Program (Grant Number 2009IM030900), and Chinese Academy of Sciences Strategic Priority Research Program (Grant Number XDB02010001, XDB02050001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Ma, C., Shi, L. et al. Optimization of an 8-Channel Loop-Array Coil for a 7 T MRI System with the Guidance of a Co-Simulation Approach. Appl Magn Reson 45, 437–449 (2014). https://doi.org/10.1007/s00723-014-0526-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0526-6

Keywords

Navigation