Skip to main content
Log in

Functional Magnetic Resonance Imaging Data Analysis by Autoregressive Estimator

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The autoregressive (AR) estimator, a non-parametric method, is used to analyze functional magnetic resonance imaging (fMRI) data. The same method has been used, with success, in several other time series data analysis. It uses exclusively the available experimental data points to estimate the most plausible power spectra compatible with the experimental data and there is no need to make any assumption about non-measured points. The time series, obtained from fMRI block paradigm data, is analyzed by the AR method to determine the brain active regions involved in the processing of a given stimulus. This method is considerably more reliable than the fast Fourier transform or the parametric methods. The time series corresponding to each image pixel is analyzed using the AR estimator and the corresponding poles are obtained. The pole distribution gives the shape of power spectra, and the pixels with poles at the stimulation frequency are considered as the active regions. The method was applied in simulated and real data, its superiority is shown by the receiver operating characteristic curves which were obtained using the simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, K. Ugarbil, Proc. Natl. Acad. Sci. USA 89, 5951 (1992)

    Article  ADS  Google Scholar 

  2. J.W. Belliveau, D.N. Kennedy, R.C. Mckinstry, B.R. Buchbinder, R.M. Weisskoff, M.S. Cohen, J.M. Vevea, T.J. Brady, B.R. Rosen, Science 254(5032), 716–719 (1991)

    Article  ADS  Google Scholar 

  3. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E.H.M.S. Cohen, R. Turner, H.M. Cheng, J.J. Brady, B.R. Rosen, Proc. Natl. Acad. Sci. USA 89, 5675 (1992)

    Article  ADS  Google Scholar 

  4. A.L. Baert, K. Sartor, J.E. Youler, Funcional MRI (Springer, New York, 2000)

  5. N. Lange, in Functional MRI, ed. by C. Moonen, P. Bandettini, Medical Radiology-Diagnostic Imaging and Radiation Oncology, vol. 27 (Springer, New York, 1999), pp. 301–335

  6. N. Lange, S.L. Zeger, Appl. Stat. J. Roy. Stat. Soc. Ser. C 46(1), 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.L. Marchini, B.D. Ripley, Neuroimage 12(4), 366–380 (2000)

    Article  Google Scholar 

  8. S. Haykin (ed.), Nonlinear Methods of Spectral Analysis (Springer, New York, 1979)

  9. P.S. Naidu, Modern Spectrum Analysis of Time Series (CRC Press, Boca Raton, 1996)

  10. R.D. Brockwell, Time Series: Theory and Methods (Springer, New York, 1991)

  11. D.M. Lin, E.K. Wong, Phys. Rep. 193(2), 41–135 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, K. Ugurbil, Proc. Natl. Acad. Sci. USA 89(13), 5951–5955 (1992)

    Article  ADS  Google Scholar 

  13. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, B.R. Rosen, Proc. Natl. Acad. Sci. USA 89(12), 5675–5679 (1992)

    Article  ADS  Google Scholar 

  14. C.T.W. Moonen, P.A. Bandettini, in Medical Radiology Diagnostic Imaging. Functional MRI, volume 27, ed. by A.L. Baert, K. Sartor, J.E. Youker (Springer, Berlin, 2000)

  15. K.J. Friston, J.T. Ashburner, S. Kiebel, T.E. Nichols, W.D. Penny (eds.), Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, New York, 2007)

  16. D.B. Rowe, B.R. Logan, Neuroimage 23(3), 1078–1092 (2004)

    Article  Google Scholar 

  17. R.H. Cervantes, S.R. Rabbani, Solid State Commun. 110(4), 215–220 (1999)

    Article  ADS  Google Scholar 

  18. J.P. Burg, A New Analysis Technique for Time Series Data (NATO, Enschede, 1968)

  19. S.D.R. Amaral, S.R. Rabbani, N. Caticha, Neuroimage 23(2), 654–662 (2004)

    Article  Google Scholar 

  20. N. Caticha, S.D. Amaral, S.R. Rabbani, Bayesian Inference Maximum Entropy Methods Sci. Eng. 735, 27–34 (2004)

    MathSciNet  ADS  Google Scholar 

  21. C. Gossl, L. Fahrmeir, D.P. Auer, Neuroimage 14(1), 140–148 (2001)

    Article  Google Scholar 

  22. K.J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, J. Ashburner, Neuroimage 16(2), 465–483 (2002)

    Article  Google Scholar 

  23. R. Ihaka, R. Gentleman, R, J. Comput. Graph. Stat. 5(3), 299–314 (1996). http://www.amstat.org/publications/jcgs/

  24. R: Development Core Team, R: a language and environment for statistical computing, R foundation for statistical computing (2010). http://www.R-project.org/

  25. W.Y. Chen, G.R. Stegen, J. Geophys. Res. 79(20), 3019–3022 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank S.D.R. Amaral and N. Caticha, for the simulated fMRI data set, and D. B. Araujo, for the real fMRI data set. This work received the support of FAPESP and CNPq. Script program can be made available by request to hernan@if.usp.br

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Cervantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervantes, H., Jousseph, C.A.C. & Rabbani, S.R. Functional Magnetic Resonance Imaging Data Analysis by Autoregressive Estimator. Appl Magn Reson 43, 321–330 (2012). https://doi.org/10.1007/s00723-012-0371-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0371-4

Keywords

Navigation