Skip to main content
Log in

Multi-Frequency EPR and DC Conductivity of Itinerant Spins in Single-Wall Carbon Nanotubes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Sealed, deoxygenated single-wall carbon nanotubes show two characteristic electron paramagnetic resonance (EPR) signals at g = 2.07 and g = 2.00 in the temperature range from 300 to 50 K. Reversible interconversion between both components was observed. The large g-shift and the temperature dependence of the EPR susceptibility of the g = 2.07 signal indicate that this signal can be attributed to itinerant spins. At low temperatures only the g = 2.00 signal remained, which could be further characterized using microwave frequencies up to 320 GHz. The direct current conductivity of a partially aligned sample was also measured. The room temperature value was estimated as 0.7 (Ωcm)−1. The observed temperature dependence can be described by assuming temperature-activated hopping in a small-gap semiconductor with an activation energy of 3.5 meV, similar to the characteristics of the previously measured 9.4 GHz microwave conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Petit, E. Jouguelet, J.E. Fischer, A.G. Rinzler, R.E. Smalley, Phys. Rev. B 56, 9275 (1997)

    Article  ADS  Google Scholar 

  2. A.S. Claye, N.M. Nemes, A. Janossy, J.E. Fischer, Phys. Rev. B 62, 4845 (2000)

    Article  ADS  Google Scholar 

  3. J.-P. Salvetat, T. Fehér, C. L’Huillier, F. Beuneu, L. Forró, Phys. Rev. B 72, 075440 (2005)

    Article  ADS  Google Scholar 

  4. B. Corzilius, K.-P. Dinse, K. Hata, J. van Slageren, Phys. Rev. B 75, 235416 (2007)

    Article  ADS  Google Scholar 

  5. B. Corzilius, K.-P. Dinse, K. Hata, M. Haluška, V. Skákalová, S. Roth, Phys. Stat. Sol. (b) 245, 2251 (2008)

    Google Scholar 

  6. R.J. Elliot, Phys. Rev. 96, 266 (1954)

    Article  ADS  Google Scholar 

  7. P. Byszewski, A. Nabialek, Europhys. Lett. 34, 31 (1996)

    Article  ADS  Google Scholar 

  8. T. Ando, J. Phys. Soc. Jpn. 69, 1757 (2000)

    Article  ADS  Google Scholar 

  9. D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006)

    Article  ADS  Google Scholar 

  10. F. Kuemmeth, S. Ilani, D.C. Ralph, P.L. McEuen, Nature 452, 448 (2008)

    Article  ADS  Google Scholar 

  11. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004)

    Article  ADS  Google Scholar 

  12. A.K. Hassan, L.-C. Brunel, J. Magn. Reson. 142, 300 (2000)

    Article  ADS  Google Scholar 

  13. J. van Tol, L.-C. Brunel, R.J. Wylde, Rev. Sci. Instrum. 76, 074101 (2005)

    Article  ADS  Google Scholar 

  14. A. Kleinhammes, S.-H. Mao, X.-J. Yang, X.-P. Tang, H. Shimoda, J.P. Lu, O. Zhou, Y. Wu, Phys. Rev. B 68, 075418 (2003)

    Article  ADS  Google Scholar 

  15. V.M. Bermudez, L.M. Ericson, Langmuir 22, 2258 (2006)

    Article  Google Scholar 

  16. B. Corzilius, K.-P. Dinse, K. Hata, Phys. Chem. Chem. Phys. 9, 6063 (2007)

    Article  Google Scholar 

  17. D.-N. Peligrad, B. Nebendahl, C. Kessler, M. Mehring, A. Dulčiċ, M. Požek, D. Paar, Phys. Rev. B 58, 11652 (1998)

    Article  ADS  Google Scholar 

  18. H. Zhu, G. Zhao, C. Masarapu, D.P. Young, B. Wei, Appl. Phys. Lett. 86, 203107 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Hata (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan), who provided us with SWNT samples. Financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged. The National High Magnetic Field Laboratory (NHMFL) is operated by the National Science Foundation (DMR-08). Experiments at the NHFML (Tallahassee) were supported by a visiting professor fellowship to K.P.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Dinse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinse, KP., van Tol, J., Ozarowski, A. et al. Multi-Frequency EPR and DC Conductivity of Itinerant Spins in Single-Wall Carbon Nanotubes. Appl Magn Reson 37, 595–603 (2010). https://doi.org/10.1007/s00723-009-0084-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0084-5

Keywords

Navigation