Skip to main content
Log in

Metamorphic P-T conditions and variation of REE between two garnet generations from granulites in the Sør-Rondane mountains, East Antarctica

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this paper, we describe the metamorphic conditions of Fe-rich granulite and variations in rare earth elements (REE) between peak garnet porphyroblasts and secondary garnet coronae. The Fe-rich granulites were collected from Vesthaugen, Sør-Rondane Mountains, East Antarctica, and consist mainly of cordierite, garnet, spinel, perthite, K-feldspar, plagioclase, and orthopyroxene or sillimanite. Temperatures estimated from perthitc–mesoperthitic feldspar compositions, experimentally calibrated geothermobarometers and the modeling of P-T pseudosections suggest that the rocks experienced peak ultrahigh-temperature (UHT) metamorphic conditions of 900–950 °C and 5.0 ± 0.5 kbar. Spinel contains quartz inclusions that also provide evidence for UHT metamorphism. Evidence of partial melting is characterized by the presence of leucocratic bands. The second generation of garnet occurs as coronae around spinel, formed during isobaric cooling following the peak conditions of UHT metamorphism. Garnet coronae and garnet porphyroblasts have distinct trace element patterns. Textural evidence and REE geochemistry suggest that the development of garnet coronae was controlled by (1) the REE composition of reactant phases and melt and/or (2) the crystallization of HREE-rich accessory phases (e.g., zircon and monazite) during secondary garnet growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adachi T, Hokada T, Osanai Y, Nakano N, Baba S, Toyoshima T (2013) Contrasting metamorphic records and their implication for tectonic process in the central Sør Rondane Mountains, eastern Dronning Maud Land, East Antarctica. In: Harley SL, Fitzsimons ICW, Zhao Y (eds.) Antarctica and supercontinent evolution. Geol Soc London Spec Publ 383:113–133

  • Asami M, Grew ES, Makimoto H (1990) A staurolite-bearing corundum-garnet gneiss from the eastern Sør Rondane Mountains, Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences 4:22–40

    Google Scholar 

  • Baba S (1998) Proterozoic anticlockwise P-T path of the Lewisian complex of South Harris, outer Hebrides, NW Scotland. J Metamorph Geol 16:819–841

    Google Scholar 

  • Baba S, Osanai Y, Nakano N, Owada M, Hokada T, Horie K, Adachi T, Toyoshima T (2013) Counterclockwise P-T path and isobaric cooling of metapelites from Brattnipene, Sør Rondane Mountains, East Antarctica: implications for a tectonothermal event at the proto-Gondwana margin. Precambrian Res 234:210–228

    Google Scholar 

  • Baba S, Owada M, Grew ES, Shiraishi K (2006) Sapphirine granulite from Schirmacher Hills, central Dronning Maud land. In: Fütterer DE, Damaske D, Kleinschmidt G, Miller H, Tessonsohn F (eds) Antarctic contributions to global earth science. Springer, Berlin, pp 37–44

    Google Scholar 

  • Battacharya A, Krishnakumar KR, Raith M, Sen SK (1991) An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and the orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol 32:629–656

    Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312

    Google Scholar 

  • Belyanin GA, Rajesh HM, Sajeev K, Van Reenen DD (2012) Ultrahigh-temperature metamorphism from an unusual corundum+orthopyroxene intergrowth bearing Al–Mg granulite from the southern marginal zone, Limpopo complex, South Africa. Contrib Mineral Petrol 164:457–475

    Google Scholar 

  • Boger SD, White RW, Schulte B (2012) The importance of iron speciation (Fe+2 / Fe+3) in determining mineral assemblages: an example from the high-grade aluminous metapelites of southeastern Madagascar. J Metamorph Geol 30:997–1018

    Google Scholar 

  • Bohlen SR, Mezger K (1989) Origin of granulite terranes and the formation of lower continental crust. Science 244:326–329

    Google Scholar 

  • Brandt S, Klemd R, Okrusch M (2003) Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulite from the Proterozoic Epupa complex, NW Namibia. J Petrol 44:1121–1144

    Google Scholar 

  • Buick IS, Clark C, Rubatto D, Hermann J, Pandit M, Hand M (2010) Constraints on the Proterozoic evolution of the Aravalli–Delhi orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120:511–528

    Google Scholar 

  • Carson CJ, Powell R (1997) Garnet-orthopyroxene geothermometry and geobarometry: error propagation and equilibration effects. J Metamorph Geol 15:679–686

    Google Scholar 

  • Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) “Nanogranite” and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37:627–630

    Google Scholar 

  • Clarke DB (1995) Cordierite in felsic igneous rocks: a synthesis. Mineral Mag 59:311–325

    Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Google Scholar 

  • Cutts K, Hand M, Kelsey DE (2011) Evidence for early Mesoproterozoic (ca. 1590 ma) ultrahigh-temperature metamorphism in southern Australia. Lithos 124:1–16

    Google Scholar 

  • De Jongh WK (1973) X-ray fluorescence analysis applying theoretical matrix correction stainless steel. X-Ray Spectrom 2:151–158

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Longman Scientific and Technical, New York, Essex 696 pp

    Google Scholar 

  • Dharmapriya PL, Sanjeewa PKM, Galli A, Su BX, Subasinghe ND, Dissanayake CB, Nimalsiri TB, Zhu B (2014) P–T evolution of a spinel + quartz bearing khondalite from the highland complex, Sri Lanka: implications for non-UHT metamorphism. J Asian Earth Sci 95:99–113

    Google Scholar 

  • Dziggel A, Diener JFA, Stoltz NB, Kolb J (2012) Role of H2O in the formation of garnet coronas during near-isobaric cooling of mafic granulites: the Tasiusarsuaq terrane, southern West Greenland. J Metamorph Geol 30:957–972

    Google Scholar 

  • Faryad SW, Ježek J (2019) Compositional zoning in garnet and its modification by diffusion during pressure and temperature changes in metamorphic rocks; an approach and software. Lithos 332-333:287–295

    Google Scholar 

  • Faryad SW, Kachlik V, Slama J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian zone (Bohemian Massif). J Metamorph Geol 33:295–330

    Google Scholar 

  • Faryad SW, Klápová, Nosál L (2010) Mechanism of formation of atoll garnet during high-pressure metamorphism. Min Mag 74:111–126

    Google Scholar 

  • Fitzsimons ICW, Harley SL (1994) The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. J Petrol 35:543–576

    Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Grantham GH, Macey PH, Horie K, Kawakami T, Ishikawa M, Satish-Kumar M, Tsuchiya N, Graser P, Azevedo S (2013) Comparison of the metamorphic history of the Monapo complex, northern Mozambique and Balchenfjella and Austhameren areas, Sør Rondane, Antarctica: implications for the Kuunga orogeny and the amalgamation of N and S. Gondwana. Precambrian Res 234:85–135

    Google Scholar 

  • Grew ES, Asami M, Makimoto H (1989) Preliminary petrological studies of the metamorphic rocks of the eastern Sør Rondane Mountains. Proceedings of the NIPR Symposium on Antarctic Geosciences 3:100–127

    Google Scholar 

  • Guevara VE, Caddick MJ (2016) Shooting at a moving target: phase equilibria modelling of high-temperature metamorphism. J Metamorph Geol 34:209–235

    Google Scholar 

  • Halpin JA, Clarke GL, White RW, Kelsey DE (2007) Contrasting P–T–t paths for Neoproterozoic metamorphism in MacRobertson and Kemp lands, East Antarctica. J Metamorph Geol 25:683–701

    Google Scholar 

  • Harley SL (1984) An experimental study of the partitioning of Fe and mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373

    Google Scholar 

  • Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126:215–247

    Google Scholar 

  • Harley SL (1998) On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions? Geol Soc London Spec Publ 138: 81–107

  • Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and peridotites. Nature 300:697–701

    Google Scholar 

  • Hensen BJ (1986) Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg–Fe–Al–Si–O. Contrib Mineral Petrol 92:362–367

    Google Scholar 

  • Hokada T (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100 °C in the Archean Napier complex, East Antarctica. Am Mineral 86:932–938

    Google Scholar 

  • Hokada T, Harley SL (2004) Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier complex, East Antarctica. J Mineral Petrol Sci 99:180–190

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Google Scholar 

  • Hollister LS (1966) Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science 154:1647–1651

    Google Scholar 

  • Jedlicka R, Faryad SW, Hauzenberger C (2015) Prograde metamorphic history of UHP granulites from the Moldanubian zone (bohemian massif) revealed by major element and Y+REE zoning in garnets. J Petrol 56:2069–2088

    Google Scholar 

  • Johannes W, Ehlers C, Kriegsman LM, Mengel K (2003) The link between migmatites and S-type granites in the Turku area, southern Finland. Lithos 68:69–90

    Google Scholar 

  • Karmakar S, Schenk V (2016) Mesoproterozoic UHT metamorphism in the southern Irumide Belt,Chipata, Zambia: petrology and in situ monazite dating. Precambrian Res 275:332–356

    Google Scholar 

  • Kawakami T, Motoyoshi Y (2004) Timing of attainment of spinel + quartz coexistence in garnet-sillimanite leucogneiss from Skallevikshalsen, Lützow-Holm complex, East Antarctica. J Mineral Petrol Sci 99:311–319

    Google Scholar 

  • Kelly ED, Carlson WD, Connelly JN (2011) Implications of garnet resorption for the Lu–Hf garnet geochronometer: an example from the contact aureole of the Makhavinekh Lake pluton, Labrador. J Metamorph Geol 29:901–916

    Google Scholar 

  • Kelsey DE, White RW, Holland TJB, Powell R (2004) Calculated phase equilibria in K2O-FeO-MgO-Al2O3-SiO2-H2O for sapphirine-quartz-bearing mineral assemblages. J Metamorph Geol 22:559–578

    Google Scholar 

  • Kelsley DE, Hand M (2015) On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geosci Front 6:311–356

    Google Scholar 

  • Kriegsman LM, Álvarez-Valero AM (2010) Melt-producing versus melt-consuming reactions in pelitic xenoliths and migmatites. Lithos 116:310–320

    Google Scholar 

  • Kriegsman LM, Hensen BJ (1988) Back reaction between restite and melt: implications for geothermobarometry and pressure-temperature paths. Geology 26:1111–1114

    Google Scholar 

  • Lee HY, Ganguly J (1988) Equilibrium compositions of coexisting garnet and orthopyroxene: reversed experimental determinations in the system FeO-MgO-Al2O3-SiO2 and applications. J Petrol 29:93–114

    Google Scholar 

  • McDonough WF, Sun S-s (1995) The composition of the earth. Chem Geol 120:223–253

    Google Scholar 

  • Mieth M, Jacobs J, Ruppel A, Damaske D, Läufer A, Jokat W (2014) New detailed aeromagnetic and geological data of eastern Dronning Maud land: implications for refining the tectonic and structural framework of Sør Rondane, East Antarctica. Precambrian Res 245:174–185

    Google Scholar 

  • Moraes R, Brown M, Fuck RA, Camargo MA, Lima TM (2002) Characterization and P–T evolution of melt-bearing ultrahigh-temperature Granulites: an example from the Anápolis–Itauçu complex of the Brasília Fold Belt, Brazil. J Petrol 43:1673–1705

    Google Scholar 

  • Nakano N, Osanai Y, Adachi T (2010) Major and trace element zoning of euhedral garnet in high-grade (>900 °C) mafic granulite from the song ma suture zone, northern Vietnam. J Mineral Petrol Sci 105:268–273

    Google Scholar 

  • Nakano N, Osanai Y, Adachi T, Yonemura K, Yoshimoto A (2012) Rapid techniques for quantitative determination of major, trace and rare earth elements in low dilution glass bead using XRF and LA-ICP-MS. Bull Grad Sch Soc Cult Stud Kyushu Univ 18:81–94 (in Japanese with English abstract)

    Google Scholar 

  • Nakano N, Osanai Y, Baba S, Adachi T, Hokada T, Toyoshima T (2011) Inferred ultrahigh-temperature metamorphism of amphibolitized olivine granulite from the Sør Rondane Mountains, East Antarctica. Polar Sci 5:345–359

    Google Scholar 

  • Newton RC, Perkins D III (1982) Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene(clinopyroxene)-quartz. Am Mineral 67:203–222

    Google Scholar 

  • Nichols GT, Berry RF, Green DH (1992) Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contrib Mineral Petrol 111:362–377

    Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Google Scholar 

  • Nyström AI, Kriegsman LM (2003) Prograde and retrograde reactions, garnet zoning patterns, and accessory phase behavior in SW Finland migmatites, with implications for geochronology. In: Vance D, Müller W, Villa IM (ed.) Geochronology: Linking the isotope record with Petrology and textures. Geol Soc London Spec Publ 220:213–230

  • Osanai Y, Nogi Y, Baba S, Nakano N, Adachi T, Hokada T, Toyoshima T, Owada M, Satish-Kumar M (2013) Geological evolution of Sør Rondane Mountains, East Antarctica - collision tectonics proposed from metamorphic processes and magnetic anomalies. Precambrian Res 234:8–29

    Google Scholar 

  • Osanai Y, Shiraishi K, Moriwaki K (1996) Geological map of the Brattnipene, Antarctica. Antarctic Geological Map Series, Sheet 34, Scale 1:50 000. Natl Inst Polar Res, Tokyo

  • Otamendi JE, de la Rosa JD, Patiño Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162

    Google Scholar 

  • Papike JJ (1987) Chemistry of the rock-forming silicates: Ortho, ring, and single-chain structures. Rev Geophys 25:1483–1526

    Google Scholar 

  • Papike JJ (1988) Chemistry of the rock-forming silicates: multiple-chain, sheet, and framework structures. Rev Geophys 26:407–444

    Google Scholar 

  • Parson I, Brown WL (1988) Sidewall crystallization in the Klokken intrusion: zoned ternary feldspars and coexisting minerals. Contrib Mineral Petrol 98:431–443

    Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Google Scholar 

  • Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the eastern Ghats Belt, India): part 1. Petrology and pressure–temperature evolution. Precambrian Res 255:485–509

    Google Scholar 

  • Shiraishi K, Osanai Y, Ishizuka H, Asami M (1997) Geological map of the Sør Rondane Mountains, Antarctica. Antarc Geol Map Seri, Sheet 35, Scale 1:250 000. Natl Inst Polar Res, Tokyo

  • Shiraishi K, Osanai Y, Tainosho Y, Takahashi Y, Tsuchiya N, Kojima S, Yanai K, Moriwaki, K (1992) Geological map of the Widerøefjellet, Antarctica. Antarctic Geological Map Series, Sheet 32, Scale 1:50,000. Natl Inst Polar Res, Tokyo

  • Shulters JC, Bohlen SR (1989) The stability of hercynite and hercynite-gahnite spinels in corundum- or quartz-bearing assemblages. J Petrol 30:1017–1031

    Google Scholar 

  • Spear FS, Kohn MJ (1999) Program Thermobarometry, version 2.1, available online at http://www.geo.rpi.edu/fac-staff/spear/GTP_Prog/GTP.html

  • St-Onge MR, Ijewliw OJ (1996) Mineral corona formation during high-P retrogression of granulitic rocks, Ungava Orogen, Canada. J Petrol 37:553–582

    Google Scholar 

  • Tracy RJ (1982) Compositional zoning and inclusions in metamorphic minerals. In: ferry JM (ed) characterization of metamorphism through mineral equilibria. Rev in Mineral 10:355–397

    Google Scholar 

  • Tracy RJ, Robinson P, Thompson AB (1976) Garnet composition and zoning in the determination of temperature and pressure of metamorphism, Central Massachusetts. Am Mineral 61:762–775

    Google Scholar 

  • Van Autenboer T (1969) Geology of the Sør Rondane Mountains. Geologic Maps of Antarctica, New York. In: Craddock C et al. (eds) Am Geogr Soc, Sheet 8, Pl. VIII (Antarctic Map Folio Series, Folio 12)

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Oxford 594 pp

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequence for crustal differentiation. Contrib Mineral Petrol 98:257–276

    Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:357–393

    Google Scholar 

  • Wen S, Nekvasil H (1994) Solvcalc: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput Geosci 20:1025–1040

    Google Scholar 

  • Wheller CJ, Powell R (2014) A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 32:287–299

    Google Scholar 

  • White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe rich metapelitic granulites of the Musgrave block, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55

    Google Scholar 

  • White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286

    Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism–constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    Google Scholar 

  • Whitney DL, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Google Scholar 

  • Zhang H, Li J, Liu S, Li S, Santosh M, Wang H (2012) Spinel + quartz-bearing ultrahigh-temperature granulites from Xumayao, Inner Mongolia suture zone, North China craton: petrology, phase equilibria and counterclockwise P-T path. Geosci Front 3:603–611

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Institute of Polar Research [General Collaboration Projects 25–17] and the Japan Society for the Promotion of Science (JSPS) [15 K05346 to S. B.]. We would like to thank the members of 48th and 49th Japan Antarctic Research Expedition (JARE), and the crew of the icebreaker SHIRASE. We also thank A. Hubert, G. Johnson-Amin, and members of the Belgian Antarctic Research Station (2007–2008) for supporting our fieldwork. We acknowledge K. Shiraishi, Y. Motoyoshi, Y. Hiroi, H. Ishizuka, T. Kawasaki, M. Owada. K. Das and E.S. Grew for valuable discussions and comments. Constructive comments by Shah Wali Faryad, Leo Kriegsman, Fawna Korhonen, Gary Stevens, Geoffrey Grantham and an anonymous reviewer improved this manuscript and are gratefully acknowledged. We thank Shah Wali Faryad and M.A.T.M. Broekmans for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotaro Baba.

Additional information

Editorial handling: S. W. Faryad

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(XLSX 46 kb)

Fig. S1

Compositional variations of spinel (hercynite) in Fe–Mg–Zn ternary diagrams. Spinel inclusions within garnet porphyroblasts have higher XMg than in other textural settings. Spinel inclusions within garnet porphyroblasts in sample T01H have high ZnO contents. Grt1=garnet porphyroblast, Grt2=garnet corona, H=sample T01H, G=sample T01G, not ident= grains not texturally identified, ar Sil= around sillimanite (PNG 28 kb)

High resolution image (EPS 10502 kb)

Fig. S2

Compositional variations of biotite in terms of (a) Ti (apfu 22 oxygens) vs XMg , (b) Cl vs XMg and (c) F vs XMg. Biotite inclusions within garnet have higher XMg and TiO2 than those in other textural settings. Secondary biotite in T01D has a high Cl content compered to other biotite. Bt2=secondary biotite, symp=symplectite, L. grain=large grain, inc. Grt=inclusion in garnet, inc. Opx=inclusion in orthopyroxene (PNG 27 kb)

High resolution image (EPS 11309 kb)

Fig. S3

T–XH2O pseudosections modeled for T01D and T01G, showing phase assemblage fields. Ovals mark stability fields of the inferred peak assemblages of Grt–melt–Opx–Crd–feldspar–Ilm–Spl–Qz for T01D and Grt–melt–Crd–Pl–Kfs–Ilm–Spl–Sill–Qz for T01G. These assemblages appear at H2O contents below 0.4 wt%. We assumed a H2O contents of 0.3 wt% and 0.2 wt% for T01D and T01G respectively (PNG 711 kb)

High resolution image (EPS 6266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, S., Osanai, Y., Adachi, T. et al. Metamorphic P-T conditions and variation of REE between two garnet generations from granulites in the Sør-Rondane mountains, East Antarctica. Miner Petrol 113, 821–845 (2019). https://doi.org/10.1007/s00710-019-00680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00680-0

Keywords

Navigation