Skip to main content
Log in

Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Tourmaline is an important gangue mineral in a large number of Cretaceous siderite-quartz-sulphide hydrothermal veins in the Gemeric Unit, Slovak Ore Mountains, Slovakia, such as Dobšiná, Vlachovo, Rožňavské Bystré, Hnilčík, Rakovnica, Novoveská Huta, Gretla, Rudňany, and Bindt. In this study we combine by electron microprobe analysis, powder X-ray diffraction, Mössbauer and optical emission spectroscopy to determine the range of tourmaline compositions in the deposits and constrain the mechanisms of its precipitation. Selected samples from the mentioned deposits belong mostly to the alkali group, schorl to dravite series, rarely dominant X-site vacant foititic tourmaline (Vlachovo and Bindt) and oxy-dravite compositions (Hnilčík) were detected. Rim zones of some schorlitic tourmalines show high concentrations of Ti (up to 2.35 wt.% TiO2, 0.30 apfu; Rožňavské Bystré). The chemical composition is mostly controlled by alkali-deficient X□AlNa−1(Mg,Fe2+)−1 and proton-deficient AlO(Mg,Fe2+)−1(OH)−1 substitutions. Titanium is incorporated into the structure by YTiY(Mg,Fe)YAl−2, YTiZMgYAl−1 ZAl−1, YTiO(YAlOH), and XCaYTiZMgO2 X−1 Y,ZAl−2(OH)−2 substitutions. Along trace elements, Sr and V attain concentrations of ~80–450 and ~70–320 ppm, respectively. The unit-cell parameter a varies between 15.960 and 15.985 Å; variations in c are larger, between 7.177 and 7.236 Å indicating the presence of Fe3+ and Mg2+ at Z site. Mössbauer spectroscopy has shown variable Fe3+ proportions (0.170.55 apfu) in all samples. The gathered dataset suggests some qualitative considerations on the mechanisms controlling tourmaline compositions at the regional scale. The highest Fe3+ concentrations occur in samples from Rudňany and Gretla in the external part of Gemeric unit, suggesting higher oxidation during longer transport of fluids. We propose that the determined XFe in the samples are correlated with the compositions of the host rocks, as schorlitic to foititic tourmalines occur in veins located in the meta-rhyolites host, and tourmalines with the highest Mg contents occur in metabasalts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreozzi GB, Bosi F, Longo M (2008) Linking Mossbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666

    Article  Google Scholar 

  • Bačík P (2007) Tourmalinites of western Carpathians: chemical composition and genetic aspects. Unpublished PhD Dissertation, Comenius University, Bratislava

  • Bačík P (2015) Cation ordering in octahedral sites in tourmalines of schorl-dravite series. Can Mineral 53:571–590

    Google Scholar 

  • Bačík P, Uher P, Sýkora M, Lipka J (2008) Low-Al tourmalines of the schorl–dravite – povondraite series in redeposited tourmalinites from the western Carpathians, Slovakia. Can Mineral 46:1117–1129

    Article  Google Scholar 

  • Bačík P, Ozdín D, Miglierini M, Kardošová P, Pentrák M, Haloda J (2011a) Crystallochemical effects of heat treatment on Fe-dominant tourmalines from Dolní Bory (Czech Republic) and Vlachovo (Slovakia). Phys Chem Miner 38:599–611

    Article  Google Scholar 

  • Bačík P, Méres Š, Uher P (2011b) Vanadium-bearing tourmaline in metacherts from Chvojnica, Slovak Republic: crystal chemistry and multi-stage evolution. Can Mineral 49:195–206

    Article  Google Scholar 

  • Bačík P, Dianiška I, Števko M, Sečkár P (2011c) Brown acicular dravite from talc-magnesite deposit Gemerská Poloma (Gemeric Superunit, Slovakia). Bull Mineral-Petrol Odd Nár Muz (Praha) 19:164–170 (in Slovak)

    Google Scholar 

  • Bačík P, Uher P, Cempírek J, Vaculovič T (2012) Magnesian tourmalines from plagioclase-muscovite-scapolite metaevaporite layers in dolomite marble near Prosetín (Olešnice unit, Moravicum, Czech Republic). J Geosci 57:143–153

    Google Scholar 

  • Bačík P, Cempírek J, Uher P, Ozdín D, Filip J, Novák M, Škoda R, Breiter K, Klementová M, Ďuďa R, Groat LA (2013) Oxy-schorl, Na(Fe2+ 2Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. Am Mineral 98:485–492

    Article  Google Scholar 

  • Bačík P, Dikej J, Fridrichová J (2014) Crystal chemistry and evolution of tourmalines on Sb deposit Čučma-Gabriela, Gemeric Superunit, Slovakia. In: Proceedings of the international symposium CEMC 2014. Czech Republic, Nové Město na Moravě, pp 162–164

    Google Scholar 

  • Bačík P, Koděra P, Uher P, Ozdín D, Jánošík M (2015) Chlorine-enriched tourmalines in hydrothermally altered diorite porphyry from the Detva, Biely Vrch porphyry gold deposit (Slovakia). Can Mineral 53:in press

  • Bajaník Š, Hanzel V, Ivanička J, Mello J, Pristaš J, Reichwalder P, Snopko L, Vozár J, Vozárová A (1983) Explanations to Geological Map of the Slovak Ore Mountains - Eastern Part. 1:50000. Geol. Inst. of Dionýz Štúr Press, Bratislava (in Slovak)

  • Baksheev IA, Prokof’ev VY, Yapaskurt VO, Vigasina MF, Zorina LD, Solov’ev VN (2011) Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia. Can Mineral 49:263–276

    Article  Google Scholar 

  • Bernard JH (1981) Mineralogy of the Czechoslovakia, 2nd edn. Academia, Prague (in Czech)

    Google Scholar 

  • Black PM (1971) Tourmalines from Cuvier Island, New Zealand. Mineral Mag 38:374–376

    Article  Google Scholar 

  • Bosi F (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. Am Mineral 93:1647–1653

    Article  Google Scholar 

  • Bosi F, Andreozzi GB (2013) A critical comment on Ertl et al. (2012): “Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline”. Am Mineral 98:2183–2192

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2004) Crystal chemistry of the schorl-dravite series. Eur J Mineral 16:335–344

    Article  Google Scholar 

  • Brand RA (1997) Normos Mossbauer fitting program, version 1997, unpublished

  • Breiter K, Broska I, Uher P (2015) Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia). Geol Carpath 66:19–36

    Article  Google Scholar 

  • Broska I, Uher P (2001) Whole-rock chemistry and genetic typology of the west-Carpathian Variscan granites. Geol Carpath 52:79–90

    Google Scholar 

  • Broska I, Uher P, Lipka J (1998) Brown and blue schorl from the Spiš-Gemer granite, Slovakia: composition and genetic relations. J Czech Geol Soc 43:9–16

    Google Scholar 

  • Broska I, Uher P, Siman P (1999) Sodium deficient schorl and foitite in the Spiš-Gemer granites. Miner Slov 31:507–512 (in Slovak with English summary)

    Google Scholar 

  • Cámara F, Ottolini L, Hawthorne FC (2002) Chemistry of three tourmalines by SREF, EMPA, and SIMS. Am Mineral 87:1437–1442

    Article  Google Scholar 

  • Cambel B, Jarkovský J (1985) The Rudňany ore field – geochemical-metallogenetic characteristics. Veda, Bratislava (in Slovak with English summary)

    Google Scholar 

  • Cavaretta G, Puxeddu M (1990) Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of Larderello geothermal field, Italy. Econ Geol 85:1236–1251

    Article  Google Scholar 

  • Chovan M, Háber M, Jeleň S, Rojkovič I (1994) Ore textures in the western Carpathians. Slovak Academic Press, Bratislava

    Google Scholar 

  • Deksissa DJ, Koeberl C (2002) Geochemistry and petrography of gold-quartz-tourmaline veins of the Okote area, southern Ethiopia: implications for gold exploration. Mineral Petrol 75:101–122

    Article  Google Scholar 

  • Dyar MD, Taylor ME, Lutz TM, Francis CA, Guidotti CV, Wise M (1998) Inclusive chemical characterisation of tourmaline: Mössbauer study of Fe valence and site occupancy. Am Mineral 83:848–864

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Prowatke S, Dyar MD, Henry DJ (2006) The F-analogue of schorl from Grasstein, Trentino—South Tyrol, Italy: crystal structure and chemistry. Eur J Mineral 18:583–588

    Article  Google Scholar 

  • Ertl A, Kolitsch U, Dyar MD, Hughes JM, Rossman GR, Pieczka A, Henry DJ, Pezzotta F, Prowatke S, Lengauer CL, Körner W, Brandstätter F, Francis CA, Prem M, Tillmanns E (2012) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. Am Mineral 97:1402–1416

    Article  Google Scholar 

  • Fareeduddin, Kirmani IR, Gupta S (2010) Low-Al tourmalines of ‘oxy-dravite’- povondraite series from Cu-Au deposit of Ghagri area, Salumber-Ghatol belt, Aravalli supergroup, Rajasthan. Curr Sci 99:933–938

    Google Scholar 

  • Faryad SW (1997) Metamorphic petrology of the early Paleozoic low-grade rocks in the Gemericum. In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the western Carpathians. Miner Slov – Monograph, Bratislava, pp 309–314

    Google Scholar 

  • Faryad SW, Jakabská K (1996) Tourmaline of the Gemer granites. Miner Slov 28:203–208 (in Slovak with English summary)

    Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Iron redox reactions in the tourmaline structure: high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Frietsch R, Tuisku P, Martinsson O, Perdahl J-A (1997) Early Proterozoic Cu-(Au) and ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34

    Article  Google Scholar 

  • Garda GM, Beljavskis P, D’Agostino LZ, Wiedenbeck M (2010) Tourmaline and rutile as indicators of a magmatic-hydrothermal origin for toirmalinite layers in the São José do Barreiro area, NE Ribeira belt, southern Brazil. Geol USP Sér Cient 10:97–117

    Article  Google Scholar 

  • Golani PR, Pandit MK, Sial AN, Fallick AE, Ferreira VP, Roy AB (2002) B–Na rich Palaeoproterozoic Aravalli metasediments of evaporitic association, NW India: a new repository of gold mineralization. Precambrian Res 116:183–198

    Article  Google Scholar 

  • Grecula P (1982) Gemericum - segment of palaeotethynian riftogeneous basin. Miner Slov, Monograph. Alfa, Bratislava

  • Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič I, Rozložník L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mountains. Volume 1. Mineralia Slovaca Corporation, Bratislava

    Google Scholar 

  • Grice JD, Robinson GW (1989) Feruvite, a new member of the tourmaline group, and its crystal structure. Can Mineral 27:199–203

    Google Scholar 

  • Grice JD, Ercit TS, Hawthorne FC (1993) Povondraite, a redefinition of the tourmaline ferridravite. Am Mineral 78:433–436

    Google Scholar 

  • Havelka J, Rozložník L (1990) Ore deposits. SNTL, Prague (in Czech)

    Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–205

    Article  Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral 33:503–557

    Google Scholar 

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Henry DJ, Kirkland BL, Kirkland DW (1999) Sector zoned tourmaline from the cap rock of a salt dome. Eur J Mineral 11:263–280

    Article  Google Scholar 

  • Henry DJ, Sun H, Slack J, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20:889–904

    Article  Google Scholar 

  • Henry D, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  • Hovorka D, Spišiak J (1997) Medium-grade metamorphics of the Gemeric unit (central western Carpathians). In: Grecula P, Hovorka D, Putiš M (eds) Geological evolution of the western Carpathians. Miner Slov, Monograph, Bratislava, pp 315–332

    Google Scholar 

  • Hurai V, Harčová E, Huraiová M, Ozdín D, Prochaska W, Wiegerová V (2002) Origin of siderite veins in the western Carpathians: I. P-T-X-δ13C-δ18O relations in ore-forming brines of the Rudňany deposit. Ore Geol Rev 21:67–101

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Econ Geol 93:47–67

    Article  Google Scholar 

  • Jiang S-Y, Radvanec M, Nakamura E, Palmer M, Kobayashi K, Zhao H-X, Zhao K-D (2008) Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: constraints on magmatic and metamorphic fluid evolution. Lithos 106:1–11

    Article  Google Scholar 

  • Klimko T, Chovan M, Huraiová M (2009) Hydrothermal mineralization of stibnite veins in the Spiš-Gemer ore Mts. Miner Slov 41:115–132 (in Slovak)

    Google Scholar 

  • Krist E, Korikovskij SP, Putiš M, Janák M, Faryad SW (1992) Geology and petrology of metamorphic rocks of the western Carpathian crystalline complexes. Comenius Univ Press, Bratislava

    Google Scholar 

  • Mlynarczyk MSJ, Williams-Jones AE (2006) Zoned tourmaline associated with cassiterite: implications for fluid evolution and tin mineralization in the San Rafael Sn-Cu deposit, southeastern Peru. Can Mineral 44:347–365

  • Novák M, Povondra P, Selway JB (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur J Mineral 16:323–333

    Article  Google Scholar 

  • Petrík I, Kohút M, Broska I (eds) (2001) Granitic plutonism of the western Carpathians: characteristics & evolution. Guide book to Eurogranites 2001. Veda, Bratislava

    Google Scholar 

  • Pieczka A, Kraczka J (2001) X-ray and Mössbauer study of Fe2+ thermal oxidation in Fe-Mg-Al-tourmaline. Bulletin Liaison S.F.M.C 13:42–43

    Google Scholar 

  • Pieczka A, Kraczka J (2004) Oxidized tourmalines – a combined chemical, XRD and Mössbauer study. Eur J Mineral 16:309–321

    Article  Google Scholar 

  • Pieczka A, Kraczka J, Zabinski W (1998) Mössbauer spectra of Fe3+ poor schorls: reinterpretation of the spectra on the basis of the ordered structure model. J Czech Geol Soc 43:69–74

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105

    Google Scholar 

  • Povondra P (1981) The crystal chemistry of tourmalines of the schorl-dravite series. Acta Univ Carol Geol 3:223–264

    Google Scholar 

  • Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum unit (western Carpathians, Slovakia): review and genetic model. Ore Geol Rev 24:267–298

    Article  Google Scholar 

  • Rossman GR, Mattson SM (1986) Yellow, Mn-rich elbaite with Mn-Ti intervalence charge transfer. Am Mineral 71:599–602

    Google Scholar 

  • Sassi FP, Vozárová A (1987) The pressure–temperature character of the Hercynian metamorphism in the Gemericum (west Carpathians, Czechoslovakia). Rend Soc Ital Mineral Petrol 42:73–81

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral 33:559–643

    Google Scholar 

  • Trumbull RB, Chaussidon M (1999) Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni granite-pegmatite system in Swaziland. Chem Geol 153:125–137

    Article  Google Scholar 

  • Uher P, Broska I (1996) Post-orogenic Permian granitic rocks in the western Carpathian-Pannonian area: geochemistry, mineralogy and evolution. Geol Carpath 47:311–321

    Google Scholar 

  • Vozárová A, Vozár J (1988) Late Paleozoic in west Carpathians. Geol. Inst. of Dionýz Štúr Press, Bratislava

    Google Scholar 

  • Yu J-M, Jiang S-Y (2003) Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration. Mineral Petrol 77:67–84

    Article  Google Scholar 

  • Žáček V, Petrov A, Hyršl J (1998) Chemistry and origin of povondraite bearing rocks from alto Capare, Cochabamba, Bolivia. J Czech Geol Soc 43:59–67

    Google Scholar 

  • Žáček V, Frýda J, Petrov A, Hyršl J (2000) Tourmalines of the povondraite - (oxy)dravite series from the cap rock of meta-evaporite in alto Chapare, Cochabamba, Bolivia. J Czech Geol Soc 45:3–12

    Google Scholar 

Download references

Acknowledgements

We thank R. Kováč and M. Maťašovský for field collaboration, J. Sprite and D. Ozdín for assistance during electron-microprobe work, Jozef Lipka and Ignác Tóth for Mössbauer study. We also thank Paolo Garofalo for editorial handling and Andreas Ertl and anonymous referee for their detailed reviews which improved the quality of our work. This work was supported by the Slovak Research and Development Agency under the contracts APVV-0375-12, and the Ministry of Education of Slovak Republic grant agency under the contracts VEGA-1/0079/15 and VEGA-1/0499/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bačík.

Additional information

Editorial handling: P. S. Garofalo

Appendix: sample location and description

Appendix: sample location and description

TU-1: Dobšiná, dumps of the Dedičná gallery, 1200 m ENE of Dobšiná downtown. Association: quartz, siderite, ankerite, tourmaline, chalcopyrite. Host rocks: paragneisses, locally with amphibolites.

TU-2: Vlachovo, dumps of the Július gallery, 1500 NE of Radzim hill (998 m a. s. l.). Association: siderite, tourmaline. Host rocks: acid metapyroclastics to metarhyolites, phyllites.

TU-3: Rožňavské Bystré, Špady-Anton vein, 1700 m NE of Rožňavské Bystré village. Association: siderite, quartz, tourmaline. Host rocks: acid metapyroclastics to metarhyolites, phyllites.

TU-7: Hnilčík, Kaluža vein in the Zlatník quarry, 1800 m NNE of the Grajnár saddle (1023 m a. s. l.). Association: quartz, siderite, ankerite, calcite, tourmaline. Host rocks: metabasalts and their metapyroclastics.

TU-10: Rakovnica, Mier mine, Mních vein, 600 m NW of the Rakovnica village. Association: quartz, siderite, tourmaline. Host rocks: acid metapyroclastics to metarhyolites, sandstones to conglomerates.

TU-22: Novoveská Huta, dumps of the Johanis (Johanni) mine, H-6 or H-7 vein, 900 m NNE of Suchá hill (898 m a. s. l.). Association: quartz, calcite, ankerite, Fe-rich dolomite, barite, tourmaline. Host rocks: sandstones to schists, locally conglomerates, acid tuffites to tuffs.

TU-23: Gretla, dumps of the Nová gallery, Piata vein, 800 m WSW of Rysovec hill (804 m a. s. l.), 3500 m SW of the Teplička village. Association: siderite, calcite, quartz, tourmaline. Host rocks: conglomerates, schists.

TU-25: Rudňany, dumps of the Zlatník vein, 1500 m WNW of Vysoký hill (874 m a. s. l.). Associaton: siderite, quartz, tourmaline. Host rocks: schists, rarely conglomerates.

TU-31 Bindt, dumps of Hrubá vein, 2000 m SE of Rysovec hill (804 m a. s. l.). Association: siderite, quartz, tourmaline. Host rocks: schists, conglomerates, phyllites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bačík, P., Uher, P., Dikej, J. et al. Tourmalines from the siderite-quartz-sulphide hydrothermal veins, Gemeric unit, western Carpathians, Slovakia: crystal chemistry and evolution. Miner Petrol 112, 45–63 (2018). https://doi.org/10.1007/s00710-017-0500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0500-8

Keywords

Navigation