Skip to main content
Log in

Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, is a new mineral found in nepheline syenite pegmatite in the Sakharjok alkaline massif, Western Keivy, Kola Peninsula, Russia. The pegmatite mainly consists of nepheline, albite, alkali pyroxenes, amphiboles, biotite and zeolites. Batievaite-(Y) is a late-pegmatitic or hydrothermal mineral associated with meliphanite, fluorite, calcite, zircon, britholite-group minerals, leucophanite, gadolinite-subgroup minerals, titanite, smectites, pyrochlore-group minerals, zirkelite, cerianite-(Ce), rutile, behoite, ilmenite, apatite-group minerals, mimetite, molybdenite, and nickeline. Batievaite-(Y) is pale-cream coloured with white streak and dull, greasy or pearly luster. Its Mohs hardness is 5–5.5. No cleavage or parting was observed. The measured density is 3.45(5) g/cm3. Batievaite-(Y) is optically biaxial positive, α 1.745(5), β 1.747(5), γ 1.752(5) (λ 589 nm), 2V meas. = 60(5)°, 2V calc. = 65°. Batievaite-(Y) is triclinic, space group P-1, a 9.4024(8), b 5.5623(5), c 7.3784(6) Å, α 89.919(2), β 101.408(2), γ 96.621(2)°, V 375.65(6) Å3 and Z = 1. The eight strongest lines of the X-ray powder diffraction pattern [d(Å)(I)(hkl)] are: 2.991(100)(11-2), 7.238(36)(00-1), 3.061(30)(300), 4.350(23)(0-1-1), 9.145(17)(100), 4.042(16)(11-1), 2.819(16)(3-10), 3.745(13)(2-10). The chemical composition determined by electron probe microanalysis (EPMA) is (wt.%): Nb2O5 2.25, TiO2 8.01, ZrO2 2.72, SiO2 29.96, Al2O3 0.56, Fe2O3 0.43, Y2O3 11.45, La2O3 0.22, Ce2O3 0.33, Nd2O3 0.02, Gd2O3 0.07, Dy2O3 0.47, Er2O3 1.07, Tm2O3 0.25, Yb2O3 2.81, Lu2O3 0.45, CaO 24.98, MnO 1.31, MgO 0.01, Na2O 1.13, K2O 0.02, F 2.88, Cl 0.19, H2O 6.75 (determined on the basis of crystal structure data), O = (F,Cl) −1.25, total 97.09 wt.%. The empirical formula based on the EPMA and single-crystal structure analyses is (Y0.81Ca0.65Mn0.15Zr0.12Yb0.11Er0.04Fe3+ 0.04Ce0.02Dy0.02Lu0.02La0.01Tm0.01)Σ2.00((H2O)0.75Ca0.700.55)Σ2.00Ca2.00(□0.61Na0.25( H2O)0.14)Σ1.00(Ti0.76Nb0.15Zr0.09)Σ1.00[(Si3.91Al0.09)Σ4.00O14]((OH)1.56F0.44)Σ2.00((H2O)1.27F0.73)Σ2.00. The infrared spectrum of the mineral contains the following bands (cm−1): 483, 584, 649, 800, 877, 985, 1630, 1646, 1732, 3426. Batievaite-(Y) belongs to the rosenbuschite group minerals and is the Na-deficient Y-analogue of hainite. The mineral is named in honour of the Russian geologist Iya Dmitrievna Batieva (1922–2007) in recognition of her remarkable contribution into the geology and petrology of metamorphic and alkaline complexes of the Kola Peninsula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atencio D, Coutinho JMV, Ulbrich MNC, Vlach SRF, Rastsvetaeva RK, Pushcharovsky DY (1999) Hainite from Poços de Caldas, Minas Gerais, Brazil. Can Mineral 37:91–98

    Google Scholar 

  • Batieva ID, Bel’kov IV (1984) The Saharjok alkaline intrusion: rocks and minerals. Kola Branch USSR Acad Sci Apatity, 133 pp [in Russian]

  • Bellezza M, Merlino S, Perchiazzi N (2009) Mosandrite: structural and crystal-chemical relationships with rinkite. Can Mineral 47:897–908

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA

  • Bulakh AG, Kapustin YL (1973) Götzenite from alkaline rocks of Turii Peninsula (Kola Peninsula). Zap Vsesoiuznogo Mineral Obshch 102:464–466 [in Russian]

    Google Scholar 

  • Cámara F, Sokolova E, Hawthorne FC (2011) From structural topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite Na2Ca4REETi(Si2O7)2OF3. Mineral Mag 75(6):2755–2774

    Article  Google Scholar 

  • Cámara F, Sokolova E, Abdu YA, Hawthorne FC (2014) Nafertisite, Na3Fe2+ 10Ti2(Si6O17)2O2(OH)6F(H2O)2, from Mt. Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia. Eur J Mineral 26:689–700

    Article  Google Scholar 

  • Cámara F, Sokolova E, Abdu YA, Hawthorne FC, Charrier T, Dorcet V, Carpentier J-F (2015) Fogoite-(Y), IMA2014-098. CNMNC Newsletter No. 24, April 2015, page 250. Mineral Mag 79(2):247–251

    Article  Google Scholar 

  • Cannillo E, Mazzi F, Rossi G (1972) Crystal structure of götzenite. Sov Phys Crystallogr 16:1026–1030

    Google Scholar 

  • Christiansen CC, Johnsen O, Makovicky E (2003) Crystal chemistry of the rosenbuschite group. Can Mineral 41:1203–1224

    Article  Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species. Springer Verlag, Dordrecht

    Book  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61(1):65–77

    Article  Google Scholar 

  • Johan Z, Čech F (1989) New data on hainite, Na2Ca4[(Ti,Zr,Mn,Fe,Nb,Ta)1.500.50](Si2O7)F4 and its crystallochemical relationship with götzenite, Na2Ca5Ti(Si2O7)2F4. C R Acad Sci II 308:1237–1242 [in French, with extended English abstract]

    Google Scholar 

  • Kadiyski M, Armbruster T, Galuskin EV, Pertsev NN, Zadov AE, Galuskina IO, Wrzalik R, Dzierzanowski P, Kislov EV (2008) The modular structure of dovyrenite, Ca6Zr[Si2O7]2(OH)4: alternate stacking of tobermorite and rosenbuschite-like units. Am Mineral 93:456–462

    Article  Google Scholar 

  • Lazarev AN (1968) Kolebatel’nye Spectry I Stroenie Silikatov (Vibrational spectra and structure of silicates). Nauka, Leningrad, 347 pp [in Russian]

    Google Scholar 

  • Lyalina LM, Zolotarev AA Jr, Selivanova EA, Savchenko YE, Zozulya DR, Krivovichev SV, Mikhailova YA (2015) Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola Peninsula, Russia). Miner Petrol 109:443–451

    Article  Google Scholar 

  • Lykova IS, Pekov IV, Zubkova NV, Chukanov NV, Yapaskurt VO, Chervonnaya NA, Zolotarev AA (2015a) Crystal chemistry of cation-exchanged forms of epistolite-group minerals, Part I. Ag- and Cu-exchanged lomonosovite and Ag-exchanged murmanite. Eur J Mineral 27:535–549

    Article  Google Scholar 

  • Lykova IS, Pekov IV, Zubkova NV, Yapaskurt VO, Chervonnaya NA, Zolotarev AA, Giester G (2015b) Crystal chemistry of cation-exchanged forms of epistolite-group minerals. Part II. Vigrishinite and Zn-exchanged murmanite. Eur J Mineral 27:669–682

    Article  Google Scholar 

  • Mandarino JA (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Can Mineral 19:441–450

    Google Scholar 

  • Merlino S, Bonaccorsi E, Armbruster T (1999) Tobermorites: their real structure and order–disorder (OD) character. Am Mineral 84:1613–1621

    Article  Google Scholar 

  • Nakamoto K (2008) Infrared and Raman spectra of inorganic and coordination compounds, theory and applications in inorganic chemistry. Wiley, Hoboken, Part A, 432 pp

    Book  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Slepnev YS (1957) On the minerals of the rinkite group. Izv Akad Nauk SSSR Ser Geol 3:65–75 [in Russian]

    Google Scholar 

  • Sokolova E (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. Can Mineral 44:1273–1330

    Article  Google Scholar 

  • Sokolova E, Cámara F (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. Can Mineral 45:1247–1261

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC (2013) From structure topology to chemical composition. XIV. Titanium silicates: refinement of the crystal structure and revision of the chemical formula of mosandrite, (Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2, a Group-I mineral from the Saga mine, Morje, Porsgrunn, Norway. Mineral Mag 77(6):2753–2771

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: applications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, Special Publication of the Geological Society 42. Geological Society, London, pp 313–345

    Google Scholar 

  • Yakovenchuk VN, Krivovichev SV, Ivanyuk GY, Pakhomovsky YA, Selivanova EA, Zhitova EA, Kalashnikova GO, Zolotarev AA, Mikhailova JA, Kadyrova GI (2014) Kihlmanite-(Ce), Ce2TiO2[SiO4](HCO3)2(H2O), a new rare-earth mineral from the pegmatites of the Khibiny alkaline massif, Kola Peninsula, Russia. Mineral Mag 78(3):483–496

    Article  Google Scholar 

  • Yukhnevich GV (1973) Infrakrasnaya Spektroskopiya Vody (Infrared spectroscopy of water). Nauka, Moscow, 208 pp [in Russian]

    Google Scholar 

  • Zolotarev A, Krivovichev S, Lyalina L, Selivanova E (2014) Crystal structure and chemistry of Na-deficient Y-dominant analogue of hainite/götzenite. 21st General Meeting of IMA. South Africa. Abstract Volume: 329

  • Zozulya DR, Lyalina LM, Eby N, Savchenko YE (2012) Ore geochemistry, zircon mineralogy, and genesis of the Sakharjok Y–Zr deposit, Kola Peninsula, Russia. Geol Ore Depos 54:81–98

    Article  Google Scholar 

  • Zozulya DR, Lyalina LM, Savchenko YE (2015) Britholite ores of the Sakharjok Zr–Y–REE deposit, Kola Peninsula: geochemistry, mineralogy, and formation stages. Geochem Int 53(10):892–902

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Russian Foundation for Basic Research (grant No. 16-05-00427). AAZ is grateful to President Federation Grant for Young Candidates of Sciences (MK-3296.2015.5). SVK acknowledges financial support from Saint-Petersburg State University (grant # 3.38.136.2014). X-ray diffraction studies were conducted at the XRD Resource Centre of Saint-Petersburg State University. We thank reviewers Fernando Camara, Anthony Robert Kampf and Igor Pekov for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Lyalina.

Additional information

Editorial handling: N. V. Chukanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyalina, L.M., Zolotarev, A.A., Selivanova, E.A. et al. Batievaite-(Y), Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia. Miner Petrol 110, 895–904 (2016). https://doi.org/10.1007/s00710-016-0444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0444-4

Keywords

Navigation