Skip to main content
Log in

Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800–850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the “Mottled Zone” Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios (~0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20–100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space group F23; a = 14.9346(4) Å; V = 3331.07(15) Å3, Z = 4. The strongest lines of the X-ray powder-diffraction pattern [d, Å – (I obs )] are: 2.874(57), 2.640 (100), 2.524(42), 2.278(41), 1.760(54), 1.725(25), 1.524(33), 1.500(33). The crystal structure was solved from single-crystal X-ray diffraction data and refined to wR2 = 0.0672 on the basis of 913 unique reflections with I 0  > 2σ(I). Tululite belongs to a group of compounds with the general formula Ca14 MT 15O35+x (0 ≤ x ≤ 1), and is a new structure type. The tetrahedral framework of tululite structure is formed by T7O13 secondary building units (SBU), which consist of four corner-linked tetrahedra sharing a common oxygen atom and three tetrahedra sharing two O atoms with the neighbor SBU. Ca2+ cations occupy three positions; two of them also contain a minor amount of Cd2+. The Ca sites surround an island (Fe3+,Al)O6 octahedron and a (Si,P)O4 tetrahedron in the centers of framework cages at the junction of eight SBUs. The (Fe3+,Al)O6 octahedron is coordinated by fourteen Ca positions into a 6-capped cube, whereas the (Si,P)O4 tetrahedron is coordinated by six Ca positions into a regular octahedron. The structural formula of tululite is Ca14{Fe3+O6}M1[(Si,P)O4]T1[(Al,Zn)7O13]2 T2-T4. The mineral is yellow with greenish tint, transparent with vitreous luster, non-fluorescent under ultraviolet light, and showing neither parting nor cleavage; Mohs hardness is 6.5. The density calculated on the basis of the empirical formula is 3.826 g/cm3. Its Raman spectrum shows strong bands at 522, 550 and 636 cm−1 and weak bands at 199, 260, 295, 456, and 754 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed AM, Arouri KR, Boreham CJ (2005) Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Mar Pet Geol 22:413–425

    Article  Google Scholar 

  • Abed A, Sadaqah R (2013) Enrichment of uranium in the uppermost Al-Hisa phosphorite Formation, Eshidiyya basin, southern Jordan. J Afr Earth Sci 77:31–40

    Article  Google Scholar 

  • Abakumov AM, Hadermann J, Kalyuzhnaya AS, Rozova MG, Mikheev MG, Van Tendeloo G, Antipov EV (2005a) Ca6.3Mn3Ga4.4Al1.3O18 – A novel complex oxide with 3D tetrahedral framework. J Solid State Chem 178:3137–3144

    Article  Google Scholar 

  • Abakumov AM, Kalyuzhnaya AS, Rozova MG, Antipov EV, Hadermann J, Van Tendeloo G (2005b) Compositionally induced phase transition in the Ca2MnGa1−xAlxO5 solid solutions: Ordering of tetrahedral chains in brownmillerite structure. Solid State Sci 7(7):801–3144

    Article  Google Scholar 

  • Achternbosch M, Bräutigam KR, Hartlieb N, Kupsch C, Richers U, Stemmermann P (2005) Impact of the use of waste on trace element concentrations in cement and concrete. Waste Manag Res 23:328–337

    Article  Google Scholar 

  • Barbanyagre VD, Timoshenko TI, Il’inets AM, Shamshurov VM (1997) Calcium aluminozincates of CaxAlyZnkOn composition. Powder Diffract 12(1):22–26

    Article  Google Scholar 

  • Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of Practical X-Ray Fluorescence Analysis. Springer-Verlag, Berlin, Heidelberg, p 398

    Book  Google Scholar 

  • Bolio-Arcéo H, Glasser FP (1998) Zinc oxide in cement clinkering: Part 1 system CaO-ZnO-Al2O3 and CaO-ZnO-Fe2O3. Adv Cem Res 10:25–32

    Article  Google Scholar 

  • Bolio-Arcéo H, Glasser FP (2000) Zinc oxide in cement clinkering: part 2 hydration, strength gain and hydrate mineralogy. Adv Cem Res 12:173–179

    Article  Google Scholar 

  • Chesnokov BV, Bushmakin AF (1995) New minerals from burned dumps of the Chelyabinsk coal basin (the 8th report). Ural’skii Mineralogicheskii Sbornik 5:3–22(in Russian)

    Google Scholar 

  • De Waele J, Forti P, Naseddu A (1999) Le "Grotte di Miniera": patrimonio scientifico e risorsa turistica in: Atti del Convegno Internazionale di Studio "Paesaggio Minerario" Cagliari, 7–10 Ottobre 1999; abstracts.

  • D’Ippolito V, Andreozzi GB, Bosi F, Hålenius U, Mantovani L, Bersani D, Fregola RA (2013) Crystallographic and spectroscopic characterization of a natural Zn-rich spinel approaching the endmember gahnite (ZnAl2O4) composition. Mineral Mag 77:2941–2953

    Article  Google Scholar 

  • Elie M, Techer I, Trotignon L, Khoury H, Salameh E, Vandamme D, Boulvais P, Fourcade S (2007) Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: Organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruck natural analogue (central Jordan). Appl Geochem 22:1311–1328

    Article  Google Scholar 

  • Fang CM, Loong CK, de Wijs GA, de Wijs G (2002) Phonon spectrum of ZnAl2O4 spinel from inelastic neutron scattering and first-principles calculations. Phys Rev B66:144301

    Article  Google Scholar 

  • Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219

    Article  Google Scholar 

  • Fourcade S, Trotignon L, Boulvais P, Techer I, Elie M, Vandamme D, Salameh E, Khoury H (2007) Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: Isotopic (C, O) study of the Khushaym Matruk natural analogue (central Jordan). Appl Geochem 22:1293–1310

    Article  Google Scholar 

  • Galuskin EV, Gazeev VM, Armbruster T, Zadov AE, Galuskina IO, Pertsev NN, Dzierżanowski P, Kadiyski M, Gurbanov AG, Wrzalik R, Winiarski A (2008) Lakargiite CaZrO3: A new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia. Am Mineral 93:1903–1910

    Article  Google Scholar 

  • Galuskin E, Armbrusteter T, Galuskina I, Lazic B, Winiarski A, Gazeeeev V, Dzierżanowski P, Zadov A, Pertsev N, Wrzalik R, Gurbanov A, Janeczek J (2011) Vorlanite (CaU6+)O4 – A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Am Mineral 96:188–196

    Article  Google Scholar 

  • Galuskin EV, Galuskina IO, Dubrovinsky LS, Janeczek J (2012) Thermally induced transformation of vorlanite to “protovorlanite”: Restoration of cation ordering in self-irradiated CaUO4. Am Mineral 97:1002–1004

    Article  Google Scholar 

  • Galuskin E, Galuskina I, Kusz J, Armbruster T, Marzec K, Dzierżanowski P, Murashko M (2014) Vapnikite Ca3UO6 – a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineral Mag 78:571–581

    Article  Google Scholar 

  • Galuskin EV, Gfeller F, Galuskina IO, Armbruster T, Bailau R, Sharygin VV (2015a) Mayenite supergroup, part I: Recommended nomenclature. Eur J Mineral 27:99–111

    Article  Google Scholar 

  • Galuskin EV, Gfeller F, Armbruster T, Galuskina IO, Ye V, Dulski M, Murashko M, Dzierżanowski P, Sharygin VV, Krivovichev SV, Wirth R (2015b) Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32[□4F2], and fluor-kyuygenite, Ca12Al14O32[(H2O)4 F2], two new minerals of mayenite supergroup from pyrometamorphic rock of Hatrurim Complex, South Levant. Eur J Mineral 27:123–136

    Article  Google Scholar 

  • Gineys N, Aouad G, Sorrentino F, Damidot D (2011) Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cem Concr Res 41:1177–1184

    Article  Google Scholar 

  • Gineys N, Aouad G, Sorrentino F, Damidot D (2012) Effect of the clinker composition on the threshold limits for Cu, Sn or Zn. Cem Concr Res 42:1088–1093

    Article  Google Scholar 

  • Golovich E, Wellman E, Serne R, Bovaird C (2011) Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments. PNNL-20726, the U.S. Department of Energy, Under Contract DE-AC05, p. 76RL01830

    Book  Google Scholar 

  • Goryainov SV, Krylov AS, Yu P, Madyukov IA, Smirnov MB, Vtyurin AN (2012) Raman investigation of hydrostatic and nonhydrostatic compressions of OH- and F-apophyllites up to 8 GPa. J Raman Spectrosc 43:439–447

    Article  Google Scholar 

  • Grapes R (2011) Pyrometamorphism, second edn. Springer, Berlin, p. 290

    Google Scholar 

  • Grins J, Istomin SYa, Svensson G, Attfield JP, Antipov EV (2005) The disordered cubic structure of Ca7Co3Ga5O18. J Solid State Chem 178:2197–2204

    Article  Google Scholar 

  • Gross S (1977) The mineralogy of the Hatrurim Formation. Israel Geol Surv Israel Bull 70:80

    Google Scholar 

  • Grundy AN, Hallstedt B, Gauckler LJ (2003) Assessment of the Mn-O system. Basic Appl Res Sec I 24:21–39

    Google Scholar 

  • Hentschel G (1964) Mayenit, 12CaO·7Al2O3, und Brownmillerit, 2CaO·(Al,Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberges. Neu Jb Mineral Mh 1:22–29

    Google Scholar 

  • Istomin SYa, Chernov SV, Antipov EV, Dobrovolsky YuA  (2007) Composition-induced phase transition in Ca14 Zn6–xGa10+xO35+x/2 (x = 0.0 and 0.5). J Solid State Chem 180(6):1882–1888

  • Kalyuzhnaya AS, Abakumov AM, Rozova MG, D’Hondt H, Hadermann J, Antipov EV (2010) Synthesis and crystal structure of the new complex oxide Ca7Mn2.14Ga5.86O17.93. Russ Chem B+ 59(4):706–711

    Article  Google Scholar 

  • Khoury H, Nassir S (1982) A discussion on the origin of Daba – Siwaqa marble. Dirasat 9:55–56

    Google Scholar 

  • Khoury H, Salameh E, Clark I (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl Geochem 43:49–65

    Article  Google Scholar 

  • Khoury H, Sokol E, Clark I (2015a) Calcium uranium oxides from Central Jordan: Mineral assemblages, chemistry, and alteration products. Can Mineral 53(1):61–82

    Article  Google Scholar 

  • Khoury H, Sokol E, Kokh S, Seryotkin Y, Nigmatulina E, Goryainov S, Belogub E, Clark I (2015b) Tululite, IMA2014-065. CNMNC Newsletter No. 23, February 2015, page 53. Mineral Mag 79:51–58

    Article  Google Scholar 

  • Khoury H, Sokol E, Kokh S, Seryotkin Y, Kozmenko O, Goryainov S, Clark I (2016) Intermediate members of the lime-monteponite solid solutions (Ca1-xCdxO, x = 0.36–0.55): Discovery in natural occurrence. Am Mineral 101:132–147. doi:10.2138/am-2016-5361

    Article  Google Scholar 

  • Kokh S, Sokol E, Sharygin V (2015) Ellestadite-group minerals in combustion metamorphic rocks. In: Stracher GB, Prakash A, Sokol EV (eds) Coal and Peat Fires: A global perspective, vol v.3. Elsevier, Amsterdam, pp. 543–562

    Google Scholar 

  • Mandarino JA (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. Can Mineral 45:1307–1324

    Article  Google Scholar 

  • Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach. Chem Geol 291:241–255

    Article  Google Scholar 

  • Model S506 Interactive Peak Fit (2002)

  • Nassir S, Khoury H (1982) Mineralogy, petrology, and origin of Daba-Siwaqa marble, Jordan. Dirasat 9:107–130

    Google Scholar 

  • Nolze G, Krause W (1998) PowderCell 2.0 for Windows. Powder Diffract 13:256–259

  • Oxford Diffraction (2008) CrysAlisRED 171.37.35. Oxford Diffraction Ltd, Abingdon, England

    Google Scholar 

  • Parat F, Dungan MA, Streck MJ (2002) Anhydrite, pyrrhotite, and sulfur-rich apatite: tracing the sulfur evolution of an Oligocene andesite (Eagle Mountain, CO, USA). Lithos 64:63–75

    Article  Google Scholar 

  • Phedorin MA, Bobrov VA, Chebykin EP, Goldberg EL, Melgunov MS, Filippova SV, Zolotarev KV (2000) Comparison of synchrotron radiation X-ray fluorescence with conventional techniques for the analysis of sedimentary samples. Geostand Geoanal Res 24:205–216

    Article  Google Scholar 

  • Pomiès MP, Lequeux N, Boch P (2001) Speciation of cadmium in cement: Part I. Cd2+ uptake by C-S-H. Cem Concr Res 31:563–569

    Article  Google Scholar 

  • Powell JH, Moh’d BK (2011) Evolution of Cretaceous to Eocene alluvial and carbonate platform sequences in central and south Jordan. GeoArabia 16:29–82

    Google Scholar 

  • Reverdatto VV (1973) The facies of contact metamorphism, 262 p. Australian National University Press, Canberra

    Google Scholar 

  • Schwartz MO (2000) Cadmium in zinc deposits: economic geology of a polluting element. Int Geol Rev 42:445–469

    Article  Google Scholar 

  • Sharygin VV, Lazic B, Armbruster TM, Murashko MN, Wirth R, Galuskina IO, Galuskin EV, Vapnik Y, Britvin SN, Logvinova AM (2013) Shulamitite Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. Eur J Mineral 13(25):97–111

    Article  Google Scholar 

  • Sharygin VV (2015) Mayenite-supergroup minerals from burned dump of the Chelyabinsk Coal Basin. Russ Geol Geophys 56:1603–1621

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Article  Google Scholar 

  • Sokol E, Kokh S, Ye V, Thiéry V, Korzhova S (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487

    Article  Google Scholar 

  • Srihari V, Sridharan V, Chandra S, Sastry VS, Sahu HK, Sundar CS (2011) Wide band gap tunability of bulk Cd1-xCaxO. J Appl Phys 109 (1):013510–1–103510-7

  • Stobbe ER, de Boer BA, Geus JW (1999) The reduction and oxidation behaviour of manganese oxides. Catal Today 47:161–167

    Article  Google Scholar 

  • Taylor HFW (1997) Cement Chemistry, second edition, 459 p. Thomas Telford Services, London

    Google Scholar 

  • Techer I, Khoury H, Salameh E, Rassineux F, Claude C, Clauer N, Pagel M, Lancelot J, Hamelin B, Jacquot E (2006) Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analogue (Central Jordan). J Geochem Explor 90:53–67

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Ye L, Cook NJ, Liu T, Ciobanu CL, Gao W, Yang Y (2012) The Niujiaotang Cd-rich zinc deposit, Duyun, Guizhou province, southwest China: ore genesis and mechanisms of cadmium concentration. Mineral Deposita 47:683–700

    Article  Google Scholar 

  • Zateeva SN, Sokol EV, Sharygin VV (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geol Ore Deposit 49(8):792–805

    Article  Google Scholar 

  • Zeigler M (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 6:445–504

    Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Peter A. Williams (University of Western Sidney) for his intellectual contribution to this work. The manuscript profited from editorial efforts by Professor Luca Bindi, Associated Editor of Mineralogy and Petrology and from criticism by two anonymous reviewers. The first author would like to thank the Deanship of Scientific Research at the University of Jordan for the support during his sabbatical year 2012/2013 at the Department of Earth Sciences, University of Ottawa, Canada. Thanks are extended to Late Prof. Andre Lalonde for his participation in the University of Ottawa collaboration. Thanks are also given to Tara Kell (XRD lab), and Glenn Poirier (MicroAnalysis Lab.) and to Dr. N. Karmanov and M. Khlestov (IGM, Novosibirsk) for assistance during the analytical work. Wadah Faris, Yousef Abu Salheh, and Azzam Azzarah (University of Jordan, Amman) are acknowledged for their help in the field and in preliminary studies. T. Perepelova (IGM, Novosibirsk) is thanked for helpful advice to the present work. Trace element abundances were analyzed by Yu. Kolmogorov at the shared-research Siberian Synchrotron and Terahertz Radiation Centre, Budker Institute of Nuclear Physics (Novosibirsk, Russia). The study was carried out within the limits of Memorandum of Understanding on Academic Cooperation between the the University of Jordan (Amman) and V.S. Sobolev Institute of Geology and Mineralogy SB RAS (Novosibirsk). The Russian contribution was supported by grant 15-05-00760 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella V. Sokol.

Additional information

Editorial handling: L. Bindi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoury, H.N., Sokol, E.V., Kokh, S.N. et al. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Miner Petrol 110, 125–140 (2016). https://doi.org/10.1007/s00710-015-0413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0413-3

Keywords

Navigation