Skip to main content
Log in

Autophagy in the fat body cells of the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria) during overwintering

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The cave cricket Troglophilus neglectus regularly overwinters for 4–5 months in hypogean habitats. Winter dormancy is a natural starvation period, providing the opportunity to study autophagy under natural conditions. We aimed to evaluate the autophagic activity in adipocytes and urocytes of the fat body in three time frames: directly before overwintering, in the middle of dormancy, and at its end. For this purpose, we sampled individuals in caves. The cell ultrastructure was studied by transmission electron microscopy (TEM) and the abundance of autophagosomes by immunofluorescence microscopy (IFM), applying the widely used, specific immunolabeling marker microtubule-associated protein 1 light chain 3 (LC3). Before overwintering, TEM revealed scarce autophagosomes and residual bodies in the adipocytes and none in the urocytes. Congruently, IFM showed a very limited or no reaction. In the middle and at the end of overwintering, in both cell types, phagophores, autophagosomes, autolysosomes, and residual bodies were identified by TEM, while LC3 immunolabeling for detecting autophagosomes showed a conspicuous positive reaction. Both methods revealed that there were no significant differences between the sexes in any time frame. Minimal autophagic activity was detected before the winter dormancy, and it gradually intensified till the end of overwintering, probably because reserve proteins in protein granula are not composed of all the required amino acids. We conclude that in T. neglectus, autophagy is a substantial response to starvation and supports homeostatic processes during winter dormancy by supplying cells with nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baehrecke EH (2003) Autophagic programmed cell death in Drosophila (review). Cell Death Differ 10(9):940–945

    Article  CAS  PubMed  Google Scholar 

  • Barth JM, Szabad J, Hafen E, Kohler K (2011) Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ 18:915–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulaton J, Lockshin RA (1977) Ultrastructural study of the normal degeneration of the intersegmental muscles of Antheraea polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference to cellular autophagy. J Morphol 154(1):39–57

    Article  CAS  PubMed  Google Scholar 

  • Berg TO, Fengsrud M, Strǿmhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892

    Article  CAS  PubMed  Google Scholar 

  • Brandão AS, Amaral JB, Rezende-Teixeira P, Hartfelder K, Siviero F, Machado-Santelli GM (2014) Cell death and tissue reorganization in Rhynchosciara americana (Sciaridae: Diptera) metamorphosis and their relation to molting hormone titers. Arthropod Struct Dev 43(5):511–522

    Article  Google Scholar 

  • Cohen E (2003) Fat body. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic, Amsterdam, pp 407–409

    Google Scholar 

  • Cooper GM, Hausman RE (2009) Protein synthesis, processing, and regulation. In: Cooper GM, Hausman RE (eds) The cell. A molecular approach. ASM Press, Washington, pp 309–352

    Google Scholar 

  • Eskelinen E-L (2008) Fine structure of the autophagosome. In: Deretic V (ed) Methods in molecular biology, Autophagosome and phagosome. Humana Press, pp 11–28

  • Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang WY, Zeng WN, Casartelli M, Deng HM, Cappellozza S, Grimaldi A, Xia Q, Feng Q, Cao Y, Tettamanti G (2012) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17(3):305–324

    Article  CAS  PubMed  Google Scholar 

  • Gaino E, Mazzini M (1995) Ultrastructural organization of the fat body in three species of mayfly (Ephemeroptera). In: Korkum L, Ciborowski J (eds) Current directions in research on Ephemeroptera. Canadian Scholar, Toronto, pp 347–357

    Google Scholar 

  • Gioacchino M, Petrarca C, Perrone A, Farina M, Sabbioni E, Hartung T, Martino S, Esposito DL, Lotti LV, Mariani-Constantini R (2008) Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells. Sci Total Environ 392:50–58

    Article  PubMed  Google Scholar 

  • Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Annu Rev Entomol 56:103–121

    Article  CAS  PubMed  Google Scholar 

  • Hyatt AD, Marshall AT (1985) Ultrastructure and cytochemistry of the fat body of Periplaneta americana (Dictyoptera: Blattidae). Int J Insect Morphol Embryol 14:131–141

    Article  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoa DB, Takeda M (2012) Expression of autophagy 8 (Atg8) and its role in the midgut and other organs of the greater wax moth, Galleria mellonella, during metamorphic remodelling and under starvation. Insect Mol Biol 21(5):473–487

    Article  CAS  PubMed  Google Scholar 

  • King-Jones K, Thummel CS (2005) Developmental biology. Less steroids make bigger flies. Science 310:630–631

    Article  CAS  PubMed  Google Scholar 

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in Yeast. J Cell Biol 147:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdalla FC, Zuckerbraun B (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4):445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondomerkos DJ, Kalamidas SA, Kotoulas OB (2004) An electron microscopic and biochemical study of the effects of glucagon on glycogen autophagy in the liver and heart of newborn rats. Microsc Res Tech 63:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 16(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: insights from invertebrate model organisms. Ageing Res Rev 12:413–428

    Article  CAS  PubMed  Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Pabst MA (2011) Role of the fat body in the cave crickets Troglophilus cavicola and Troglophilus neglectus (Rhaphidophoridae, Saltatoria) during overwintering. Arthropod Struct Dev 40(1):54–63

    Article  PubMed  Google Scholar 

  • Lipovšek S, Janžekovič F, Novak T (2014) Autophagic activity in the midgut gland of the overwintering harvestmen Gyas annulatus (Phalangiidae, Opiliones). Arthropod Struct Dev 43:493–500

    Article  PubMed  Google Scholar 

  • Lipovšek S, Novak T, Janžekovič F, Leitinger G (2015) Changes in the midgut diverticula in the harvestmen Amilenus aurantiacus (Phalangiidae, Opiliones) during winter diapause. Arthropod Struct Dev. doi:10.1016/j.asd.2014.12.002

    PubMed  Google Scholar 

  • Locke M (1998) The fat body. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11B, Insecta. Wiley-Liss, New York, pp 641–686

    Google Scholar 

  • Locke M, Collins JV (1968) Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J Cell Biol 36(3):453–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagoli D, Abdalla FC, Cao Y, Feng Q, Fujisaki K, Gregorc A, Matsuo T, Nezis IP, Papassideri IS, Sass M, Silva-Zacarin ECM, Tettamanti G, Umemiya-Shirafuji R (2010) Autophagy and its physiological relevance in arthropods: current knowledge and perspectives (review). Autophagy 6(5):575–588

    Article  CAS  PubMed  Google Scholar 

  • Martinet W, De Bie M, Schrijvers DM, De Meyer GRY, Herman AG, Kockx MM (2004) 7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:2296–2301

    Article  CAS  PubMed  Google Scholar 

  • Maurizii MG, Mazzini M, Giorgi F (1992) Structural modifications of the fat body in the stick insects Bacillus rossius during larval development. B Zool 59:387–394

    Article  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    Article  PubMed  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    CAS  PubMed  Google Scholar 

  • Nezis IP (2012) Selective autophagy in Drosophila. Review article. Int J Cell Biol, Article ID 146767:9. doi:10.1155/2012/146767

  • Novak T, Janžekovič F, Lipovšek S (2013) Contribution of non-troglobiotic terrestrial invertebrates to carbon input in hypogean habitats. Acta Carsologica 42:301–309, http://ojs.zrc-sazu.si/carsologica/article/view/669

    Article  Google Scholar 

  • Park MS, Takeda M (2009) Starvation induces apoptosis in the midgut nidi of Periplaneta americana: a histochemical and ultrastructural study. Cell Tissue Res 335(3):631–638

    Article  PubMed  Google Scholar 

  • Park MS, Takeda M (2014) Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the American cockroach, Periplaneta americana. Cell Tissue Res 356(2):405–416

    Article  CAS  PubMed  Google Scholar 

  • Pehani S, Virant-Doberlet M, Jeram S (1997) The life cycle of the cave cricket Troglophilus neglectus Krauss with a note on T. cavicola Kollar (Orthoptera: Rhaphidophoridae). Entomologiste 116:224–238

    Google Scholar 

  • Polver PD, Sacchi L, Grigolo A, Laudani U (1986) Fine structure of the fat body and its bacteroids in Blattella germanica (Blattodea). Acta Zool 67:63–71

    Article  Google Scholar 

  • Pontes EG, Leite P, Majerowicz D, Atella GC, Gondim KC (2008) Dynamics of lipid accumulation by the fat body of Rhodnius prolixus: the involvement of lipophorin binding sites. J Insect Physiol 54:790–797

    Article  CAS  PubMed  Google Scholar 

  • Rideout HJ, Lang-Rollin I, Stefanis L (2004) Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol 36:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in lepidoptera. Review article. Hindawi Publishing Corporation, BioMed Research International. Article ID 902315: 11. doi: 10.1155/2014/902315

  • Rost-Roszkowska MM, Poprawa I, Kaczmarek L (2011) Autophagy as the cell survival in response to a microsporidian infection of the midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada:Hypsibiidae). Acta Zool. doi:10.1111/j.1463-6395.2011.00552.x

    Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Sosinka A, Skudlik J, Franzetti E (2012) The role of autophagy in the midgut epithelium of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca). Arthropod Struct Dev 41(3):271–279

    Article  CAS  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Chajec Ł, Vilimova J, Tajovský K, Kszuk-Jendrysik M (2015) Does autophagy in the midgut epithelium of centipedes depend on the day/night cycle? Micron 68:130–139

    Article  CAS  PubMed  Google Scholar 

  • Santos DE, Azavedo DO, Campos LAO, Zanuncio JC, Serrão (2015) Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy. Protoplasma 252:619–627

    Article  CAS  PubMed  Google Scholar 

  • Schmid D, Münz C (2007) Innate and adaptive immunity through autophagy. Immunity 26:11–21

    Article  Google Scholar 

  • Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Sumithra P, Britto CP, Krishnan M (2010) Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 339(2):349–358

    Article  PubMed  Google Scholar 

  • Suzuki SW, Onodera J, Ohsumi Y (2011) Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS ONE 6(2), e17412. doi:10.1371/journal.pone.0017412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro Y, Shimadzu T, Matsuura S (1976) Lysosomes and related structures in the posterior silk gland cells of Bombyx mori. I. In late larval stadium. Cell Struct Funct 1(3):205–222

    Article  CAS  Google Scholar 

  • Tettamanti G, Saló E, González-Estévez C, Felix DA, Grimaldi A, de Eguileor M (2008) Autophagy in invertebrates: insights into development, regeneration and body remodeling. Curr Pharm Des 14(2):116–125

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida K, Wells MA (1988) Digestion, absorption, transport and storage of fat during the last larval stadium of Manduca sexta. Changes in the role of lipophorin in the delivery of dietary lipid to the fat body. Insect Biochem 18:263–268

    Article  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9):814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zara FJ, Caetano FH (2004) Ultramorphology and histochemistry of fat body cells from last Instar larval of the Pachycondyla (=Neoponera) villosa (Fabricius) (Formicidae: Ponerinae). Braz J Biol 64:725–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elisabeth Bock, Rudi Schmied (Medical University Graz), and Rudi Mlakar (Faculty of Medicine, University of Maribor) for their excellent technical assistance, Franc Janžekovič for the statistical analysis of the data, and Michelle Gadpaille for the linguistic improvements to the manuscript. We are grateful to two anonymous reviewers for their insightful comments and suggestions. This study was partly supported by the Biodiversity Research Programme, Grant P1-0078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saška Lipovšek.

Additional information

Handling Editor: Lucy M Collinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipovšek, S., Novak, T. Autophagy in the fat body cells of the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria) during overwintering. Protoplasma 253, 457–466 (2016). https://doi.org/10.1007/s00709-015-0824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0824-3

Keywords

Navigation