Skip to main content
Log in

Morphology and water permeability of red blood cells from green sea turtle (Chelonia mydas)

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The morphology and diffusional water permeability (P d) of red blood cells (RBCs) from green sea turtle (GST) (Chelonia mydas) are presented for the first time. The RBCs had an ellipsoidal shape with full-axis lengths (diameters): D = 14.4 μm; d = 10.2 μm; h = 2.8 μm. The values of P d (cm s−1) were 5.1 × 10−3 at 15 °C, 5.7 × 10−3 at 20 °C, 6.3 × 10−3 at 25 °C, 6.8 × 10−3 at 30 °C, and 7.9 × 10−3 at 37 °C (i.e., significantly higher than in human RBCs in which it was measured to be 4.2 × 10−3 at 25 °C, 5.0 × 10−3 at 30 °C, and 6.2 × 10−3 at 37 °C). There was a lack of inhibition of P d of GST RBCs by p-chloromercuribenzoate (PCMB), a well-known inhibitor of the RBC water channel proteins (WCPs). The activation energy of water diffusion (E a,d) in GST RBCs was 15.0 ± 1.6 kJ mol−1 which is lower than the E a,d for human RBCs (~25 kJ mol−1). These results indicate that in the membrane of GST RBCs, there were no WCPs that were inhibited by the mercurial reagent, while the lipid bilayer of this membrane is unusually permeable to water. This is likely to be a phylogenetically old trait, like that found in amphibians and even the later birds, all of which have nucleated erythrocytes; and it is also likely to be a result of the animal’s adaptation to a herbivorous diet (algae and seagrasses).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of membrane water channels. Am J Physiol 265:F461

    CAS  PubMed  Google Scholar 

  • Balaban AT, Haiduc I, Matasa CG, Sha’afi RI (2006) Who discovered the water channels (aquaporins)? Cell Mol Biol 52:6–7

    CAS  PubMed  Google Scholar 

  • Benga G (1988) Water transport in red blood cell membranes. Prog Biophys Mol Biol 51:193–245

    Article  CAS  PubMed  Google Scholar 

  • Benga G (1989) Water exchange through the erythrocyte membrane. Int Rev Cytol 114:273–316

    Article  CAS  PubMed  Google Scholar 

  • Benga G (2003) Birth of water channel proteins—the aquaporins. Cell Biol Int 27:701–709

    Article  CAS  PubMed  Google Scholar 

  • Benga G (2006) Water channel proteins: from their discovery in 1985 in Cluj-Napoca, Romania, to the 2003 Nobel Prize in Chemistry. Cell Mol Biol 52:10–19

    CAS  PubMed  Google Scholar 

  • Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present and future. IUBMB Life 61:112–133

    Article  CAS  PubMed  Google Scholar 

  • Benga G (2012a) The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications. Mol Asp Med 33:518–534

    Article  CAS  Google Scholar 

  • Benga G (2012b) On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Mol Asp Med 33:514–517

    Article  CAS  Google Scholar 

  • Benga G (2013) Aquaporinology (the study of water channel proteins—aquaporins and relatives) as a new domain of natural sciences, Oltenia. Studii şi comunicări Ştiinţele Naturii (Oltenia for Studies in natural Sciences) 29:316–319

    Google Scholar 

  • Benga G (2014) Aquaporinology. Acta Endocrinol (Buc) 10:1–8

    Article  CAS  Google Scholar 

  • Benga Gh, Kuchel PW (2005) Physiological significance of water channel proteins in the red blood cell membranes: analysis at the level of the cell- and of the whole-body systems. In: Zinn D, Savoie MJ, Lin K-C, El-Badawy E-S, Gh Benga Gh (eds) Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA, 10–13 July 2005. Vol. X, pp. 105–110

  • Benga G, Popescu O, Pop VI, Holmes RP (1986a) p-Chloromercuribenzensulfonate binding by membranes proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Popescu O, Borza V, Pop VI, Mureşan A, Mocsy I, Brain A, Wrigglesworth J (1986b) Water permeability of human erythrocytes. Identification of membrane proteins involved in water transport. Eur J Cell Biol 41:252–262

    CAS  PubMed  Google Scholar 

  • Benga G, Pop VI, Popescu O, Hodârnău A, Borza V, Presecan E (1987) Effects of temperature on water diffusion in human erythrocytes and ghosts-nuclear magnetic resonance studies. Biochim Biophys Acta 905:339–348

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Popescu O, Borza V, Pop VI, Hodârnău A (1989) Water exchange through erythrocyte membranes: biochemical and nuclear magnetic resonance studies re-evaluating the effects of sulfhydryl reagents and of proteolytic enzymes on human membranes. J Membr Biol 108:105–113

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Pop VI, Popescu O, Borza V (1990) On measuring the diffusional water permeability of human red blood cells and ghosts by nuclear magnetic resonance. J Biochem Biophys Methods 21:87–102

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Poruţiu D, Ghiran I, Kuchel PW, Gallagher CH, Cox GC (1992) Scanning electron microscopy of red blood cells from eleven species of marsupial. Comp Haematol Int 2:227–230

    Article  Google Scholar 

  • Benga G, Popescu T, Borza O, Poruţiu D, Matei H (1993a) Comparative nuclear magnetic resonance studies of red blood cells from sheep and cow. Comp Biochem Physiol 104B:89–594

    Google Scholar 

  • Benga G, Chapman BE, Gallagher CH, Agar NS, Kuchel PW (1993b) NMR studies of diffusional water permeability from eight species of marsupial. Comp Biochem Physiol 106A:15–518

    Google Scholar 

  • Benga G, Chapman BE, Gallagher CH, Cooper D, Kuchel PW (1993c) NMR studies of diffusional water permeability of red blood cells from macropodid marsupials (kangaroos and wallabies). Comp Biochem Physiol 104A:799–803

    Article  Google Scholar 

  • Benga G, Matei H, Borza T, Poruţiu D, Lupşe C (1993d) Comparative nuclear magnetic resonance studies on water diffusional permeability of red blood cells from mice and rats. Comp Biochem Physiol 104A:491–495

    Article  CAS  Google Scholar 

  • Benga G, Matei H, Borza T, Poruţiu D, Lupşe C (1993e) Comparative nuclear magnetic resonance studies on diffusional water permeability of red blood cells from different species. V Rabbit. Comp Biochem Physiol 106B:281–285

    CAS  Google Scholar 

  • Benga G, Chapman BE, Hinds L, Kuchel PW (1994a) Comparative NMR studies of diffusional water permeability of erythrocytes from some animals introduced to Australia: rat, rabbit and sheep. Comp Haematol Int 4:232–235

    Article  Google Scholar 

  • Benga G, Ralston GB, Borza T, Chapman BE, Gallagher CH, Kuchel PW (1994b) Diffusional water permeability of red blood cells from Echidna (Tachyloglossus aculeatus). Comp Biochem Physiol 107B:45–50

    CAS  Google Scholar 

  • Benga G, Borza T, Matei H, Hodor P, Frenţescu L, Ghiran I, Lupşe C (1995) Comparative nuclear magnetic resonance of water permeability of red blood cells from different species. VIII. Adult and fetal guinea pig (Cavia porcellus). Comp Haematol Int 5:106–111

    Article  CAS  Google Scholar 

  • Benga G, Matei H, Chapman BE, Bulliman BT, Gallagher CH, Agar NS, Kuchel PW (1996) Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. IX. Australian feral chicken and domestic chicken (Gallus domesticus). Comp Haematol Int 6:92–95

    Article  Google Scholar 

  • Benga G, Grieve SM, Chapman BE, Gallagher CH, Kuchel PW (1999) Comparative NMR studies of diffusional water permeability of red blood cells from different species. X. Camel (Camelus dromedarius) and alpaca (Lama pacos). Comp Haematol Int 9:43–48

    Article  Google Scholar 

  • Benga G, Kuchel PW, Chapman BE, Cox GC, Gallagher CH (2000a) Comparative cell shape and diffusional water permeability of red blood cells from Indian elephant (Elephas maximus) and man (Homo sapiens). Comp Haematol Int 10:1–8

    Article  Google Scholar 

  • Benga G, Matei H, Frenţescu L, Chapman BE, Kuchel PW (2000b) Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. XI. Horses introduced to Australia and European horses (Equus caballus). Comp Haematol Int 10:138–143

    Article  CAS  Google Scholar 

  • Benga G, Ghiran I, Matei H, Frenţescu L, Florea A (2002a) Comparative nuclear magnetic resonance studies of diffusional water permeability of red blood cells from different species. XII. Dog (Canis familiaris) and cat (Felis domestica). Comp Clin Pathol 11:246–255

    Article  CAS  Google Scholar 

  • Benga G, Chapman BE, Matei HV, Gallagher C, Blyde D, Kuchel PW (2002b) Effects of p-chloromercuribenzene sulfonate on water transport across the marsupial erythrocyte membrane. J Comp Physiol B 172:513–518

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Chapman BE, Cox GC, Kuchel PW (2003) Comparative NMR studies of diffusional water permeability of red blood cells from different species: XIV. Little penguin (Eudyptula minor). Cell Biol Int 27:921–928

    Article  CAS  PubMed  Google Scholar 

  • Benga G, Chapman BE, Kuchel PW (2009) Comparative NMR studies of diffusional water permeability of red blood cells from different species XV. Agile wallaby (Macropus agilis), red-necked wallaby (Macropus rufogriseus) and Goodfellow’s tree kangaroo (Dendrolagus goodfellowi). J Comp Physiol A 154:105–109

    Google Scholar 

  • Benga G, Chapman BE, Matei HV, Romeo T, Mironescu E, Kuchel PW (2010a) Comparative NMR studies of diffusional water permeability of red blood cells from different species XVI. Dingo (Canis familiaris dingo) and dog (Canis familiaris). Cell Biol Int 34:373–378

    Article  PubMed  Google Scholar 

  • Benga G, Chapman BE, Cox GC, Kuchel PW (2010b) Comparative NMR studies of diffusional water permeability of red blood cells from different species XVIII. Platypus (Ornithorhynchus anatinus) and saltwater crocodile (Crocodylus porosus). Cell Biol Int 34:703–708

    Article  CAS  PubMed  Google Scholar 

  • Bjorndal KA (1997) Foraging ecology and nutrition of sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, London, pp 199–231

    Google Scholar 

  • Conlon T, Outhred R (1972) Water diffusion permeability of erythrocytes using an NMR technique. Biochim Biophys Acta 288:354–361

    Article  CAS  PubMed  Google Scholar 

  • Godley BJ, Broderick AC, Hays GC (2001) Nesting of green turtles (Chelonia mydas) at Ascension Island. South Atl Biol Conserv 97:151–158

    Article  Google Scholar 

  • Haulică I (2006) A regrettable mistake in the award of the 2003 Nobel Prize in chemistry: the omission of Gheorghe Benga, the first discoverer of the water channel protein in the red blood cell membrane. Cell Mol Biol 52:8–9

    PubMed  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    Article  CAS  PubMed  Google Scholar 

  • Kuchel PW (2006) The story of the discovery of aquaporins: convergent evolution of ideas—but who got there first? Cell Mol Biol 52:2–5

    CAS  PubMed  Google Scholar 

  • Kuchel PW, Benga G (2005) Why does the mammalian red blood cell have aquaporins? Biosystems 82:189–196

    Article  CAS  PubMed  Google Scholar 

  • Marshall B (1999) The Crocodile. New York Publishers Inc

  • Morariu VV, Benga G (1977) Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects. Biochim Biophys Acta 469:301–310

    Article  CAS  PubMed  Google Scholar 

  • Morariu VV, Benga G (1984) Water diffusion through erythrocyte membrane in normal and pathological subjects: nuclear magnetic resonance investigations. In: Benga G, Baum H, Kummerow FA (eds) Membrane processes: molecular biology and medical applications. Springer, Berlin, pp 121–140

    Chapter  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Adaptation and environment, 5th edn. Cambridge University Press, Cambridge, pp 200–201

    Google Scholar 

  • Seminoff JA (2004) Chelonia mydas. 2006. IUCN (International Union for Conservation of Nature) Red List of Threatened Species. IUCN 2006. www.iucnredlist.org

  • Wolburg H, WolburgBucholz K, Fallier-Becker P, Noell S, Mack A (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 287:1–41

    Article  CAS  PubMed  Google Scholar 

  • Wolfram S (2009) The Mathematica Book. Version 7.0.0’. Champaign, Illinois, Wolfram Medi

Download references

Acknowledgments

We thank Dr William Bubb and Mr William Lowe (University of Sydney), Dr Gheorghe Zsolt Nicula, Mrs Adina Chiş and Mr Radu Munteanu (Discipline of Cell and Molecular Biology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania), for assistance with experimental, computer, and secretarial work. We record our appreciation to the late Professor C. H. Gallagher who through Taronga Zoo, Sydney, arranged for the blood samples and to the late Dr Bogdan E. Chapman for his contribution to the NMR analyses.

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Benga.

Additional information

Handling Editor: Lucy M Collinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benga, G., Chapman, B.E., Romeo, T. et al. Morphology and water permeability of red blood cells from green sea turtle (Chelonia mydas). Protoplasma 252, 1181–1185 (2015). https://doi.org/10.1007/s00709-014-0747-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0747-4

Keywords

Navigation