Skip to main content
Log in

Plane waves and uniqueness theorems in the theory of viscoelastic mixtures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, the linear theory of binary viscoelastic mixtures is considered. The basic properties of plane harmonic waves are established. Green’s first identity for 3D bounded and unbounded domains is obtained. On the basis of this identity the uniqueness theorems of regular (classical) solutions of the boundary value problems (BVPs) of steady vibrations are proved. Then these theorems are established in the quasi-static case. Finally, the uniqueness theorems for the first internal and external BVPs of steady vibrations in general and quasi-static cases are proved under weak condition on the viscoelastic constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, M.S., Saal, M., Villagrán, O.V.: Exponential stability of a thermoviscoelastic mixture with second sound. J. Therm. Stress. 39, 1321–1340 (2016)

    Article  Google Scholar 

  2. Atkin, R.J., Chadwick, P., Steel, T.R.: Uniqueness theorems for linearized theories of interacting continua. Mathematika 14, 27–42 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures. Basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–245 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17, 153–207 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedford, A., Drumheller, D.S.: Theory of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  MATH  Google Scholar 

  6. Bedford, A., Stern, M.: A multi-continuum theory for composite elastic materials. Acta Mech. 14, 85–102 (1972)

    Article  MATH  Google Scholar 

  7. Borrelli, A., Patria, M.C.: Uniqueness and reciprocity in the boundary-initial value problem for a mixture of two elastic solids occupying an unbounded domain. Acta Mech. 46, 99–109 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borrelli, A., Patria, M.C.: Uniqueness in the boundary-value problems for the static equilibrium equations of a mixture of two elastic solids occupying an unbounded domain. Int. J. Eng. Sci. 22, 23–38 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics III. Academic Press, New York (1976)

    Google Scholar 

  10. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7, 689–722 (1969)

    Article  MATH  Google Scholar 

  11. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures for thermoelastic solids. J. Therm. Stress. 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  12. Chiriţǎ, S., Galeş, C.: A mixture theory for microstretch thermoviscoelastic solids. J. Therm. Stress. 31, 1099–1124 (2008)

    Article  Google Scholar 

  13. De Cicco, S., Svanadze, M.: Fundamental solution in the theory of viscoelastic mixtures. J. Mech. Mater. Struct. 4, 139–156 (2009)

    Article  Google Scholar 

  14. Galeş, C.: On spatial behavior in the theory of viscoelastic mixtures. J. Therm. Stress. 30, 1–24 (2007)

    Article  MathSciNet  Google Scholar 

  15. Galeş, C.: Some results in the dynamics of viscoelastic mixtures. Math. Mech. Solids 13, 124–147 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Galeş, C.: On spatial behavior of the harmonic vibrations in thermoviscoelastic mixtures. J. Therm. Stress. 32, 512–529 (2009)

    Article  Google Scholar 

  17. Green, A.E., Naghdi, P.M.: A dynamic theory of interacting continua. Int. J. Eng. Sci. 3, 231–241 (1965)

    Article  Google Scholar 

  18. Green, A.E., Steel, T.R.: Constitutive equations for interacting continua. Int. J. Eng. Sci. 4, 483–500 (1966)

    Article  Google Scholar 

  19. Ieşan, D.: On the theory of viscoelastic mixtures. J. Therm. Stress. 27, 1125–1148 (2004)

    Article  MathSciNet  Google Scholar 

  20. Ieşan, D.: Continuous dependence in a nonlinear theory of viscoelastic porous mixtures. Int. J. Eng. Sci. 44, 1127–1145 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ieşan, D.: A theory of thermoviscoelastic composites modelled as interacting Cosserat continua. J. Therm. Stress. 30, 1269–1289 (2007)

    Article  Google Scholar 

  22. Ieşan, D., Nappa, L.: On the theory of viscoelastic mixtures and stability. Math. Mech. Solids 13, 55–80 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Ieşan, D., Scalia, A.: On a theory of thermoviscoelastic mixtures. J. Therm. Stress. 34, 228–243 (2011)

    Article  Google Scholar 

  24. Kelly, P.: A reacting continua. Int. J. Eng. Sci. 2, 129–153 (1964)

    Article  MATH  Google Scholar 

  25. Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  26. Knops, R.J., Steel, T.R.: Uniqueness in the linear theory of a mixture of two elastic solids. Int. J. Eng. Sci. 7, 571–577 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publishing Company, Amsterdam (1979)

    Google Scholar 

  28. Lakes, R.: Viscoelastic Materials. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  29. Müller, I.: A thermodynamics theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  30. Passarella, F., Tibullo, V., Zampoli, V.: On microstretch thermoviscoelastic composite materials. Eur. J. Mech. A/Solids 37, 294–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Passarella, F., Zampoli, V.: On the exponential decay for viscoelastic mixtures. Arch. Mech. 59, 97–117 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Quintanilla, R.: Uniqueness of equilibrium solutions in nonlinear theory of elastic mixtures. ZAMM - J. Appl. Math. Mech. 75, 947–950 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Quintanilla, R.: Existence and exponential decay in the linear theory of viscoelastic mixtures. Eur. J. Mech. A/Solids 24, 311–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  35. Rushchitsky, J.J.: Interaction of waves in solid mixtures. Appl. Mech. Rev. 52(2), 35–74 (1999)

    Article  Google Scholar 

  36. Steel, T.R.: Applications of a theory of interacting continua. Q. J. Mech. Appl. Math. 20, 57–72 (1967)

    Article  MATH  Google Scholar 

  37. Svanadze, M.: The uniqueness of solutions of stable oscillation of linear theory of a two-component elastic mixture. Bull. Acad. Sci. Ga. 145, 51–54 (1992)

    MATH  Google Scholar 

  38. Svanadze, M.: On existence of eigenfrequencies in the theory of two-component elastic mixtures. Q. J. Mech. Appl. Math. 51, 427–437 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Svanadze, M.: Plane waves and eigenfrequencies in the linear theory of binary mixtures of thermoelastic solids. J. Elast. 92, 195–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Svanadze, M.: Boundary value problems in the theory of binary mixtures of thermoelastic solids. Proc. Appl. Math. Mech. 8, 10469–10470 (2008)

    Article  Google Scholar 

  41. Svanadze, M., Iovane, G.: Fundamental solution in the linear theory of thermoviscoelastic mixtures. Eur. J. Appl. Math. 18, 323–335 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tiersten, H.F., Jahanmir, M.: A theory of composites modeled as interpenetrating solid continua. Arch. Ration. Mech. Anal. 65, 153–192 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maia M. Svanadze.

Additional information

This research has been performed by financial support of Shota Rustaveli National Science Foundation (Grant #YS15_ 2.1.1_ 100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanadze, M.M. Plane waves and uniqueness theorems in the theory of viscoelastic mixtures. Acta Mech 228, 1835–1849 (2017). https://doi.org/10.1007/s00707-017-1799-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1799-2

Mathematics Subject Classification

Navigation