Skip to main content
Log in

Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: an approximate method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nanosensors are simple engineering devices designed to detect and convey informations about nanoparticles and biomolecules. The nanosized mass sensors are based on the fact that the resonant frequency is sensitive to the resonator and the attached mass. The change of the attached mass on the resonator causes the resonant frequency to deviate from its original value. The key challenge in mass detection is in quantifying the changes in the resonant frequencies due to the added masses. The present paper deals with the free vibration analysis of a single-walled carbon nanotube with attached distributed mass, located in a generic position. According to the nonlocal Euler–Bernoulli beam theory, a system of three equations of motion, of a single-walled carbon nanotube with an added mass, is derived. Using an approximate method, generalized nondimensional calibration constants are derived for an explicit relationship between the added mass, the nonlocal parameter, and the frequency shift. Numerical results for different boundary conditions and nonlocal coefficient are performed in order to evaluate the effect of the added mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)

    Article  Google Scholar 

  2. Salvetat, J.P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)

    Article  Google Scholar 

  3. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  4. Demczyk, B.G., Wang, Y.M., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173–178 (2002)

    Article  Google Scholar 

  5. Collins, P.G., Avouris, P.: Nanotubes for electronics. Sci. Am. 283, 62–69 (2000)

    Article  Google Scholar 

  6. Wu, D.H., Chien, W.T., Chen, C.S., Chen, H.H.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuators A 126, 117–121 (2006)

    Article  Google Scholar 

  7. Joshi, A.Y., Sharma, S.C., Harsha, S.P.: Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors. J. Nanotechnol. Eng. Med. 1, 31007–031014 (2010)

    Article  Google Scholar 

  8. Mehdipour, I., Barari, A., Domairry, G.: Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50, 1830–1833 (2011)

    Article  Google Scholar 

  9. Georgantzinos, S.K., Anifantis, N.K.: Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Phys. E 42, 1795–1801 (2010)

    Article  Google Scholar 

  10. Elishakoff, I., Versaci, C., Muscolino, G.: Clamped–free double-walled carbon nanotube-based mass sensor. Acta Mech. 219, 29–43 (2011)

    Article  MATH  Google Scholar 

  11. Elishakoff, I., Versaci, C., Muscolino, G.: Effective stiffness and effective mass of the double-walled carbon nanotube sensor. J. Nanotechnol. Eng. Med. 2, 011008 (2011)

    Article  MATH  Google Scholar 

  12. Elishakoff, I., Challamel, N., Soret, C., Bekel, Y., Gomez, T.: Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1993), 20120424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elishakoff, I., Pentaras, D., Dujat, K., Versaci, C., Muscolino, G., Storch, J., Bucas, S., Challamel, N., Natsuki, T., Zhang, Y.Y., Wang, C.M., Ghyselinck, G.: Carbon Nanotubes and Nano Sensors: Vibrations, Buckling, and Ballistic Impact. ISTE-Wiley, London (2012)

    Book  Google Scholar 

  14. Mateiu, R., Kuhle, A., Marie, R., Boisen, A.: Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope. Ultramicroscopy 105, 233–237 (2005)

    Article  Google Scholar 

  15. Kang, J.W., Kwon, O.K., Lee, J.H., Choi, Y.G., Hwang, H.J.: Frequency change by inter-walled length difference of double-walled carbon nanotube resonator. Solid State Commun. 149, 1574–1577 (2009)

    Article  Google Scholar 

  16. Kang, J.W., Kwon, O.K., Hwang, H.J., Jiang, Q.: Resonance frequency distribution of cantilevered (5,5) (10,10) double-walled carbon nanotube with different intertube lengths. Mol. Simul. 37, 18–22 (2011)

    Article  Google Scholar 

  17. Elishakoff, I., Pentaras, D.: Fundamental natural frequencies of double-walled carbon nanotubes. J. Sound Vib. 322, 652–664 (2009)

    Article  Google Scholar 

  18. Eringen, A.C.: On differential equations of non local elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  19. Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  20. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  21. Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J.: Bending buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)

    Article  Google Scholar 

  22. Pradhan, S.C., Phadicar, J.K.: Bending buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Struct. Eng. Mech. Int. J. 33, 193–213 (2009)

    Article  Google Scholar 

  23. Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  24. De Rosa, M.A., Lippiello, M.: Free vibration analysis of DWCNTs using CDM and Rayleigh–Schmidt based on nonlocal Euler–Bernoulli beam theory. Sci. World J (2014)

  25. Ansari, R., Sahmani, S.: Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simul. 17, 1965–1979 (2012)

    Article  MathSciNet  Google Scholar 

  26. Lee, H.L., Hsu, J.C., Chang, W.J.: Frequency shift of carbon nanotube-based mass sensors using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)

    Article  Google Scholar 

  27. Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Phys. E 43, 1229–1234 (2001)

    Article  Google Scholar 

  28. Shen, Z.B., Deng, B., Li, X.F., Tang, G.J.: Buckling instability of carbon nanotube atomic force microscope probe clamped in an elastic medium. ASME J. Nanotechnol. Eng. Med. 2, 031003 (2011)

    Article  Google Scholar 

  29. Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based bio-sensor. Phys. E 42, 104–109 (2009)

    Article  Google Scholar 

  30. Murmu, T., Adhikari, S.: Nonlocal frequency analysis of nanoscale biosensors. Sens. Actuators A 173, 41–48 (2012)

    Article  Google Scholar 

  31. Adhikari, S., Chowdhury, R.: The calibration of nanotube based bionanosensors. J. Appl. Phys. 107, 124322 (2010)

    Article  Google Scholar 

  32. De Rosa, M.A., Lippiello, M.: Hamilton principle for SWCN and a modified approach for nonlocal frequency analysis of nanoscale biosensor. Int. J. Recent Sci. Res. 6, 2355–2365 (2015)

    Google Scholar 

  33. Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511–26 (2008)

    Article  Google Scholar 

  34. Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)

    Article  Google Scholar 

  35. De Rosa, M.A., Franciosi, C., Lippiello, M., Piovan, M.T.: Nonlocal frequency analysis of nanosensors with attached distributed biomolecules with different boundary conditions. Mech. Comput. 33, 1529–1541 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. De Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, M.A., Lippiello, M., Martin, H.D. et al. Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: an approximate method. Acta Mech 227, 2323–2342 (2016). https://doi.org/10.1007/s00707-016-1631-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1631-4

Keywords

Navigation