Skip to main content

Advertisement

Log in

Optimal design of a multilayered piezoelectric transducer based on a special unit cell homogenization method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piezoelectric transducers with high directional-dependent response are of interest in several applications because of their ability to sense and actuate along specific directions where they can distinguish individual principal strain components. This paper presents an improved unidirectional sensor obtained using a multi-laminate piezocomposite that maximizes the electromechanical coupling factor or the piezoelectric strain constant in one direction with respect to the other directions. Furthermore, multi-laminate structures provide significant design potential by the variation of the orientation and stacking sequence of fibers to obtain the desired properties. The effective properties depend on the number of layers, the fibers orientation as well as the thickness of each layer, and they are estimated by the variational asymptotic method for unit cell homogenization. A design that guarantees maximum directional dependence in terms of piezoelectric strain constant is determined by a global optimization technique using a genetic algorithm. Layered transducers composed of several orthotropic passive layers and a single active layer are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berdichevskii V.: On averaging of periodic systems. J. Appl. Math. Mech. 41, 1010–1023 (1977)

    Article  MathSciNet  Google Scholar 

  2. Berger H., Kari S., Gabbert U., Rodríguez-Ramos R., Bravo-Castillero J., Guinovart-Díaz R.: A comprehensive numerical homogenisation technique for calculating effective coefficients of uniaxial piezoelectric fibre composites. Mater. Sci. Eng. A 412, 53–60 (2005)

    Article  Google Scholar 

  3. Biscani F., Nasser H., Belouettar S.: Directional dependence of the static response of layered piezoelectric transducers. J. Intell. Mater. Syst. Struct. 23, 1311–1322 (2012)

    Article  Google Scholar 

  4. Biscani F., Nasser H., Belouettar S., Carrera E.: Equivalent electro-elastic properties of macro fiber composite (MFC) transducers using asymptotic expansion approach. Compos. Part B Eng. 42, 444–455 (2011)

    Article  Google Scholar 

  5. Chan H.L.W., Unsworth J.: Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. Ultrason. Ferroelectr. Freq. Control IEEE Trans. 36, 434–441 (1989)

    Article  Google Scholar 

  6. Chen B., Silva E., Kikuchi N.: Advances in computational design and optimization with application to MEMS. Int. J. Numer. Methods Eng. 52, 23–62 (2001)

    Article  MathSciNet  Google Scholar 

  7. Deraemaeker A., Nasser H., Benjeddou A., Preumont A.: Mixing rules for the piezoelectric properties of macro fiber composites. J. Intell. Mater. Syst. Struct. 20, 1475–1482 (2009)

    Article  Google Scholar 

  8. Feoktistov V.: Differential evolution. Springer, US (2006)

    MATH  Google Scholar 

  9. Frecker M.: Recent advances in optimization of smart structures and actuators. J. Intell. Mater. Syst. Struct. 14, 207–216 (2003)

    Article  Google Scholar 

  10. Grekov A., Kramarov S., Kuprienko A.: Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions. Ferroelectrics 99, 115–126 (1989)

    Article  Google Scholar 

  11. Hagood, N., Bent, A.: Development of piezoelectric fiber composites for structural actuation. In: AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference, vol. 1, pp. 3625–3638 (1993)

  12. Kalamkarov, A.L., Challagulla, K.S.: Effective properties of composite materials, reinforced structures and smart composites: asymptotic homogenization approach. In: Kachanov, M., Sevostianov, I. (eds.) Effective properties of heterogeneous materials, vol. 193. Springer, Netherlands (2013)

  13. Kang Z., Tong L.: Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput. Struct. 86, 1885–1893 (2008)

    Article  Google Scholar 

  14. Kang Z., Wang X.: Topology optimization of bending actuators with multilayer piezoelectric material. Smart Mater. Struct. 19, 1–12 (2010)

    Google Scholar 

  15. Kögl M., Silva E.: Topology optimization of smart structures: Design of piezoelectric plate and shell actuators. Smart Mater. Struct. 14, 387–399 (2005)

    Article  Google Scholar 

  16. Koutsawa Y., Belouettar S., Makradi A., Tiem S.: X-FEM implementation of VAMUCH: application to active structural fiber multi-functional composite materials. Compos. Struct. 94, 1297–1304 (2012)

    Article  Google Scholar 

  17. Koutsawa Y., Biscani F., Belouettar S., Nasser H., Carrera E.: Multi-coating inhomogeneities approach for the effective thermo-electro-elastic properties of piezoelectric composite materials. Compos. Struct. 92, 964–972 (2010)

    Article  Google Scholar 

  18. Montemurro M., Nasser H., Koutsawa Y., Belouettar S., Vincenti A., Vannucci P.: Identification of electromechanical properties of piezoelectric structures through evolutionary optimisation techniques. Int. J. Solids Struct. 49, 1884–1892 (2012)

    Article  Google Scholar 

  19. Sigmund O., Torquato S., Aksay I.: On the design of 1–3 piezocomposites using topology optimization. J. Mater. Res. 13, 1038–1048 (1998)

    Article  Google Scholar 

  20. Silva E., Ono Fonseca J., Kikuchi N.: Optimal design of periodic piezocomposites. Comput. Methods Appl. Mech. Eng. 159, 49–77 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan P., Tong L.: Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials. Compos. Sci. Technol. 61, 759–769 (2001)

    Article  Google Scholar 

  22. Tang T., Yu W.: Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials. Mech. Mater. 40, 812–824 (2008)

    Article  Google Scholar 

  23. Tang T., Yu W.: Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater. Struct. 18, 125,026 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssein Nasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, H., Porn, S., Koutsawa, Y. et al. Optimal design of a multilayered piezoelectric transducer based on a special unit cell homogenization method. Acta Mech 227, 1837–1847 (2016). https://doi.org/10.1007/s00707-016-1581-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1581-x

Keywords

Navigation