Skip to main content
Log in

Detection of defective pile geometries using a coupled FEM/SBFEM approach and an ant colony classification algorithm

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piles are widely used to build a proper foundation for various buildings. The piles’ quality in situ can be tested by a so-called pile integrity test. In order to apply this test, an impulse is given to the piles’ head which generates a p-wave running through the pile. An acceleration sensor is attached to the piles’ head, to measure the vertical movement. The major part of this wave is reflected from the piles’ toe and is measured by the attached acceleration sensor on top of the pile. This yields an acceleration–time plot which has to be analysed in order to determine the piles’ condition with respect to structural consistence and mostly radius defects. Since deviations in the cross section of the pile cause additional reflections, suitable post-processing can be used in order to detect these defects. In this paper, we propose an ant colony classification model to detect structural defects in piles by evaluating displacement–time plots to improve the reliability of pile monitoring. The data of these plots result to numerically performed pile integrity tests. To conduct these tests, a simulation of a combined finite element method and scaled boundary finite element methods has been carried out. These results are used for learning and training the ant colony classification model and to have different sets of data to validate the optimization algorithm. The position and the type of piles’ defect can be identified by the applied algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caddemi S., Calio I.: Exact reconstruction of multiple concentrated damages on beams. Acta Mech. 225(11), 3137–3156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chai H.Y., Phoon K.K.: Detection of shallow anomalies in pile integrity testing. Int. J. Geomech. 13(5), 672–677 (2013)

    Article  Google Scholar 

  3. Chakraborty A., Gopalakrishnan S.: Wave propagation in inhomogeneous layered media: solution of forward and inverse problems. Acta Mech. 169(1–4), 153–185 (2004)

    Article  MATH  Google Scholar 

  4. Chretien, L.: Organisation Spatiale du Materiel Provenant de l’excavation du nid chez Messor Barbarus et des Cadavres d’ouvrieres chez ”Lasius niger” (Hymenopterae: Formicidae). PhD thesis, Universite Libre de Bruxelles (1996)

  5. Chung J., Hulbert G.M.: A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized-α Method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dasgupta D.: Artificial Immune Systems and their Application. Springer, Heidelberg (1998)

    Google Scholar 

  7. De Castro L.N., Timmis J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  8. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting: Robot-like ant and ant-like Robot. In: Meyer, J.A., Wilson, S.W. (eds.), Proceedings of the First Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 356–365. MIT Press, Cambridge (1991)

  9. Dorigo M., Maniezzo V., Colorni A.: Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet. B 26(1), 29–41 (1996)

    Article  Google Scholar 

  10. Dorigo M., Gambardella L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  11. Dorigo M., Stutzle T.: Ant Colony Optimization. A Bradford Book, The MIT Press Cambridge, London (2004)

    MATH  Google Scholar 

  12. EA-Pfähle.: Empfehlungen des Arbeitskreises Pfähle, Deutsche Gesellschaft für Geotechnik, Ernst & Sohn, Dortmund (2007)

  13. Echevarria, L.C., Velho, H.F.C., Becceneri, C., Neto, A.J.C., Santiago, O.L.: The fault diagnosis inverse problem: ACO and ACO-d. Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling, Feb 26-March 2, 2012, pp. 381–391, Maresias, Sao Sebastiao, S.P. Brazil (2012)

  14. Engelbrecht A.P.: Computational Intelligence: An Introduction. Wiley, England (2007)

    Book  Google Scholar 

  15. Engelhardt M., Antes H., Stavroulakis G.E.: Crack and flaw identification in elastodynamics using Kalman filter techniques. Comput. Mech. 37, 249–265 (2006)

    Article  MATH  Google Scholar 

  16. Fischer, J., Missal, C., Breustedt, M., Stahlmann, J.: Numerical simulation of low strain integrity tests on model piles, NUMGE2010, 7th European Conference on Numerical Methods in Geotechnical Engineering, pp. 655–660 (2010)

  17. Hetmaniok E., Slota D., Zielonka A.: Application of swarm intelligence algorithms in solving the inverse heat conduction problem. Comput. Assist. Methods Eng. Sci. 19, 361–367 (2012)

    Google Scholar 

  18. Hilbert H., Hughes T., Taylor R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  19. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31(1), 61–85 (2009). doi:10.1007/s10462-009-9127-4

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

  21. Liu G.R., Ma W.B., Han X.: Inversion of loading time history using displacement response of composite laminates: Three-dimensional cases. Acta Mech. 157(1–4), 223–234 (2002)

    Article  MATH  Google Scholar 

  22. Liu S.W., Huang J.H., Sung J.C., Lee C.C.: Detection of cracks using neural networks and computational mechanics. Comput. Methods Appl. Mech. Eng. 191(25-26), 2831–2845 (2002)

    Article  MATH  Google Scholar 

  23. Lumer, E., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 3, pp. 499–508. MIT Press, Cambridge (1994)

  24. Mroz, Z., Stavroulakis, G.E. (eds.).: Parameter identification of materials and structures. CISM Lecture Notes, Vol. 469, Springer (2005)

  25. Newmark N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  26. Plaßmann, B.: Zur Optimierung der Meßtechnik und der Auswertemethodik bei Pfahlintegritätsprüfungen (2002)

  27. Protopapadakis, E., Schauer, M., Pierri, E., Doulamis, A., Stavroulakis, G., Boehrnsen, J.U., Langer, S.: A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput. Struct. 162, 68–79 (2016)

  28. Schauer M., Roman J.E., Quintana-Ortí E.S., Langer S.: Parallel Computation of 3-D Soil-Structure Interaction in Time Domain with a Coupled (FEM/SBFEM) Approach. J. Sci. Comput. 52, 446–467 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schauer, M.: Ein effizienter gekoppelter FEM-SBFEM Ansatz zur Analyse von Boden-Bauwerk-Interaktionen im Zeitbereich Institut für Statik, Technische Universität Braunschweig, Bericht Nr. pp. 2015-2117 (2015)

  30. Sholeh K., Vafai A., Kaveh A.: Online detection of the breathing crack using an adaptive tracking technique. Acta Mech. 188(3-4), 139–154 (2007)

    Article  MATH  Google Scholar 

  31. Stavroulakis G.E. (2001) Inverse and Crack Identification Problems in Engineering Mechanics. Springer, Kluwer

  32. Stavroulakis, G.E., Bolzon, G., Waszczyszyn, Z., Ziemianski, L.: Inverse Analysis. In: Comprehensive Structural Integrity, Elsevier., Editors in Chief: B. Karihaloo, R.O. Ritchie, I. Milne, Vol. 3: Numerical and Computational Methods, Volume Editors: R. de Borst, H.A. Mang, Chapter 13, pp. 685–718 (2003)

  33. Stavroulakis G.E., Engelhardt M., Likas A., Gallego R., Antes H.: Neural network assisted crack and flaw identification in transient dynamics. J. Theor. Appl. Mech., Polish Academy of Sciences, Invited Paper in Special Issue on ’Engineering Applications of Soft Computing’, 42(3), 629–649 (2004)

    MATH  Google Scholar 

  34. Tian M., Zhou J.: Inversing mechanical parameters of concrete gravity dams using ant colony optimization. Ant Colony Optimization and Swarm Intelligence. Lecture Notes in Computer Science, 3172, 358–365 (2004)

    Article  Google Scholar 

  35. Ouadfel S., Batouche M.: AntClust: An Ant Algorithm for Swarm-Based Image Clustering. Inf. Technol. J. 6(2), 196–201 (2007)

    Article  Google Scholar 

  36. Wolf J., Song C.: Finite-Element Modelling of Unbounded Media. Wiley, Chichester (1996)

    MATH  Google Scholar 

  37. Wolf J.: The Scaled Boundary Finite Element Method. Wiley, Chichester (2003)

    Google Scholar 

  38. Zheng, D., Wang, Y., Deng, Y.-M., Yu, A., Li, W.: Application of genetic BP algorithm in low strain pile integrity. Appl. Mech. Mater. vol. 101–102, pp. 732–736 (2011)

  39. Zheng, C., Kouretzis, G.P., Ding, X., Liu, H., Poulos, H.G.: Three-dimensional effects in low strain integrity testing of piles: analytical solution. Can. Geotechn. J. (2015). doi:10.1139/cgj-2015-0231

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psychas, I.D., Schauer, M., Böhrnsen, JU. et al. Detection of defective pile geometries using a coupled FEM/SBFEM approach and an ant colony classification algorithm. Acta Mech 227, 1279–1291 (2016). https://doi.org/10.1007/s00707-015-1548-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1548-3

Keywords

Navigation