Skip to main content
Log in

Heat generation in plane strain compression of a thin rigid plastic layer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a theoretical investigation into heat generation in the continued quasi-static plane strain compression of a thin metal strip between two rigid, parallel perfectly rough dies. The strip material is rigid perfectly plastic. The length of the dies is supposed to be much larger than the current strip thickness. The plastic work rate approaches infinity in the vicinity of perfectly rough friction surfaces. Since the plastic work rate is involved in the heat conduction equation, this significantly adds to the difficulties of solutions of this equation. In particular, commercial finite element packages are not capable of solving such boundary value problems. The present approximate solution is given in Lagrangian coordinates. In this case, the original initial/boundary value problem reduces to the standard second initial/boundary value problem for the nonhomogeneous heat conduction equation. Therefore, the Green’s function is available in the literature. An example is presented to illustrate the general solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanner R.I., Johnson W.: Temperature distributions in some fast metal-working operations. Int. J. Mech. Sci. 1, 28–44 (1960)

    Article  Google Scholar 

  2. Hadala B.: Implementation of the heat balance in the finite element solution to the temperature field of the plastically deformed material. Int. J. Therm. Sci. 71, 172–181 (2013)

    Article  Google Scholar 

  3. Abukhshim N.A., Mativenga P.T., Sheikh M.A.: Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int. J. Mach. Tool. Manuf. 46, 782–800 (2006)

    Article  Google Scholar 

  4. Zienkiewicz O.C., Jain P.C., Onate E.: Flow of solids during forming and extrusion. Some aspects of numerical solutions. Int. J. Solids Struct. 14, 15–38 (1978)

    Article  Google Scholar 

  5. Zienkiewicz O.C., Onate E., Heinrich J.C.: A general formulation for coupled thermal flow of metals using finite elements. Int. J. Numer. Meth. Eng. 17, 1497–1514 (1981)

    Article  MATH  Google Scholar 

  6. Griffiths B.J.: Mechanisms of white layer generation with reference to machining and deformation processes. Trans. ASME J. Tribol. 109, 525–530 (1987)

    Article  Google Scholar 

  7. Griffiths B.J., Furze D.C.: Tribological advantages of white layers produced by machining. Trans. ASME J. Tribol. 109, 338–342 (1987)

    Article  Google Scholar 

  8. Warren A.W., Guo Y.B.: Numerical investigation on the effects of machining-induced white layer during rolling contact. Tribol. Trans. 48, 436–441 (2005)

    Article  Google Scholar 

  9. Choi Y.: Influence of a white layer on the performance of hard machined surfaces in rolling contact. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224, 1207–1215 (2010)

    Article  Google Scholar 

  10. Appleby E.J., Lu C.Y., Rao R.S., Devenpeck M.L., Wright P.K., Richmond O.: Strip drawing: a theoretical-experimental comparison. Int. J. Mech. Sci. 26, 351–362 (1984)

    Article  Google Scholar 

  11. Rebelo N., Kobayashi S.: A coupled analysis of viscoplastic deformation and heat transfer-II: applications. Int. J. Mech. Sci. 22, 708–718 (1980)

    MATH  Google Scholar 

  12. Chen J.-C., Pan C., Rogue C.M.O.L., Wang H.-P.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22, 289–307 (1998)

    Article  MATH  Google Scholar 

  13. Wang J.-P.: A new evaluation to friction analysis for the ring test. Int. J. Mach. Tools Manuf. 41, 311–324 (2001)

    Article  Google Scholar 

  14. Chandrasekharan S., Palaniswamy H., Jain N., Ngaile G., Altan T.: Evaluation of stamping lubricants at various temperature levels using the ironing test. Int. J. Mach. Tools Manuf. 45, 379–388 (2005)

    Article  Google Scholar 

  15. Alexandrov S., Richmond O.: Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non Linear Mech. 36, 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Alexandrov S., Mishuris G.: Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces. J. Eng. Math. 65, 143–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alexandrov S., Jeng Y.-R.: Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Contin. Mech. Thermodyn. 25, 685–689 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hill R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  19. Nepershin R.I.: Non-isothermal plane plastic flow of a thin layer compressed by flat rigid dies. Int. J. Mech. Sci. 39, 899–912 (1997)

    Article  MATH  Google Scholar 

  20. Adams M.J., Briscoe B.J., Corfield G.M., Lawrence C.J., Papathanasiou T.D.: An analysis of the plane-strain compression of viscous materials. Trans. ASME J. Appl. Mech. 64, 420–424 (1997)

    Article  MATH  Google Scholar 

  21. Polyanin A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC Press, London (2002)

    MATH  Google Scholar 

  22. Fries T.-P., Belytschko T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Ng E.-G., Aspinwall D.K., Brazil D., Monaghan J.: Modelling of temperature and forces when orthogonally machining hardened steel. Int. J. Mach. Tools Manuf. 39, 885–903 (1999)

    Article  Google Scholar 

  24. Kim T.-K., Ikeda K.: Flow behavior of the billet surface layer in porthole die extrusion of aluminium. Metall. Mater. Trans. 31, 1635–1643 (2000)

    Article  Google Scholar 

  25. Yiğit K., Tuğrul Ö.: Predictive analytical and thermal modeling of orthogonal cutting process—part I: predictions of tool forces, stresses, and temperature distributions. ASME J. Manuf. Sci. Eng. 128, 435–444 (2006)

    Article  Google Scholar 

  26. Ramesh A., Melkote Shreyes N.: Modeling of white layer formation under thermally dominate condition in orthogonal machining of hardened AISI 52100 steel. Int. J. Mach. Tool. Manuf. 48, 402–414 (2008)

    Article  Google Scholar 

  27. Lalwani D.I., Mehta N.K., Jain P.K.: Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J. Mater. Process. Technol. 209, 5305–5312 (2009)

    Article  Google Scholar 

  28. Akbar F., Mativenga P.T., Sheikh M.A.: An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int. J. Adv. Manuf. Technol. 46, 491–507 (2010)

    Article  Google Scholar 

  29. Chen G., Li J., He Y., Ren C.: A new approach to the determination of plastic flow stress and failure initiation strain for aluminium alloys cutting process. Comput. Mater. Sci. 95, 568–578 (2014)

    Article  Google Scholar 

  30. Agmell M., Ahadi A., Stahl J.-E.: Identification of plastic constants from orthogonal cutting and inverse analysis. Mech. Mater. 77, 43–51 (2014)

    Article  Google Scholar 

  31. Sanabria V., Mueller S., Reimers W.: Microstructure evolution of friction boundary layer during extrusion of AA 6060. Procedia Eng. 81, 586–591 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, S., Miszuris, W. Heat generation in plane strain compression of a thin rigid plastic layer. Acta Mech 227, 813–821 (2016). https://doi.org/10.1007/s00707-015-1499-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1499-8

Keywords

Navigation