Skip to main content
Log in

An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The impact of a rigid-rod into a low-strength target is an ubiquitous research problem in many scientific and engineering fields. Typically, this impact has been modeled by the expansion of a pressurized spherical cavity in an unbounded elasto-plastic medium. In this paper, an engineering penetration model was developed using the dynamic spherical cavity expansion theory for an elasto-plastic, compressible, strain-dependent and strain-rate-sensitive material. The material plastic flow behavior was modeled using the Cowper–Symonds strength model. The engineering model was numerically solved, and its predictions were compared with results of computational finite-elements simulations performed in ANSYS/AUTODYN. Additionally, engineering and computational models were validated with experimental data using spherical-nosed, M300 steel projectiles impacting a semi-infinite Al 6061-T651 plate. Comparisons showed good agreement among engineering model results, computational model results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backman M.E., Goldsmith W.: The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16, 1–99 (1978)

    Article  Google Scholar 

  2. Bernard, R.S.: Depth and motion prediction for earth penetrators. DTIC Document (1978)

  3. Bishop R.F., Hill R., Mott N.F.: The theory of indentation and hardness tests. Proc. Phys. Soc. Lond. 57, 147 (1945)

    Article  Google Scholar 

  4. Carter J.P.: The expansion of a cylinder under conditions of finite plane strain. Nucl. Eng. Des. 47, 101–106 (1978)

    Article  Google Scholar 

  5. Chen X.W., Li Q.M.: Perforation of a thick plate by rigid projectiles. Int. J. Impact Eng. 28, 743–759 (2003)

    Article  Google Scholar 

  6. Cohen T., Masri R., Durban D.: Analysis of circular hole expansion with generalized yield criteria. Int. J. Solids Struct. 46, 3643–3650 (2009)

    Article  Google Scholar 

  7. Cowper, G.R., Symonds, P.S.: Strain-hardening and strain-rate effects in the impact loading of cantilever beams. In: DTIC Document (1957)

  8. Dabboussi W., Nemes J.A.: Modeling of ductile fracture using the dynamic punch test. Int. J. Mech. Sci. 47, 1282–1299 (2005)

    Article  Google Scholar 

  9. Durban D., Baruch M.: On the problem of a spherical cavity in an infinite elasto-plastic medium. J. Appl. Mech. 43, 633 (1976)

    Article  Google Scholar 

  10. Durban D., Fleck N.A.: Spherical cavity expansion in a Drucker-Prager solid. J. Appl. Mech. 64, 743–750 (1997)

    Article  Google Scholar 

  11. Durban D., Masri R.: Dynamic spherical cavity expansion in a pressure sensitive elastoplastic medium. Int. J. Solids Struct. 41, 5697–5716 (2004)

    Article  Google Scholar 

  12. Forrestal M.J., Brar N.S., Luk V.K.: Penetration of strain-hardening targets with rigid spherical-nose rods. J. Appl. Mech. 58, 7–10 (1991)

    Article  Google Scholar 

  13. Forrestal M.J., Luk V.K.: Dynamic spherical cavity-expansion in a compressible elastic–plastic solid. J. Appl. Mech. 55, 755–760 (1988)

    Article  Google Scholar 

  14. Forrestal M.J., Okajima K., Luk V.K.: Penetration of 6061-t651 aluminum targets with rigid long rods. J. Appl. Mech. 55, 755 (1988)

    Article  Google Scholar 

  15. Forrestal M.J., Tzou D.Y., Askari E., Longcope D.B.: Penetration into ductile metal targets with rigid spherical-nose rods. Int. J. Impact Eng. 16, 699–710 (1995)

    Article  Google Scholar 

  16. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, London (1950)

    Google Scholar 

  17. Holmquist T.J., Johnson G.R.: Response of silicon carbide to high velocity impact. J. Appl. Phys. 91, 5858 (2002)

    Article  Google Scholar 

  18. Hopkins H.G.: Dynamic expansion of spherical cavities in metals. Prog. Solid Mech. 1, 85–164 (1960)

    Google Scholar 

  19. Houlsby G.T., Withers N.J.: Analysis of the cone pressure meter test in clay. Geotechnique 38, 575–587 (1988)

    Article  Google Scholar 

  20. Jacob P., Goulding L.: An Explicit Finite Element Primer. NAFEMS Ltd, Glasgow (2002)

    Google Scholar 

  21. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics, pp. 541–547 (1983)

  22. Jones S.E., Rule W.K.: On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction. Int. J. Impact Eng. 24, 403–415 (2000)

    Article  Google Scholar 

  23. Jones S.E., Rule W.K., Jerome D.M., Klug R.T.: On the optimal nose geometry for a rigid penetrator. Comput. Mech. 22, 413–417 (1998)

    Article  Google Scholar 

  24. Luk V.K., Forrestal M.J., Amos D.E.: Dynamic spherical cavity expansion of strain-hardening materials. J. Appl. Mech. 58, 1 (1991)

    Article  Google Scholar 

  25. Masri, R., Durban, D.: Self similar dynamic expansion of a spherical cavity in elastoplastic media. In: 21st International Congress of Theoretical and Applied Mechanics (2004)

  26. Masri R., Durban D.: Dynamic spherical cavity expansion in an elastoplastic compressible Mises solid. J. Appl. Mech. 72, 887–898 (2005)

    Article  Google Scholar 

  27. Osinov V.A.: Large-strain dynamic cavity expansion in a granular material. Math. Mech. Granul. Mater. 1, 185–198 (2005)

    Article  MathSciNet  Google Scholar 

  28. Rajendran, A.M.: High Strain Rate Behavior of Metals Ceramics, and Concrete. In: DTIC Document (1992)

  29. Seidt, J.D., Gilat, A., Klein, J.A., Leach, J.R.: High strain rate, high temperature constitutive and failure models for eod impact scenarios. In: SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Society for Experimental Mechanics (SEM) (2007)

  30. Shaw A.: Penetration of rigid objects into semi-infinite compressible solids. Mech. Mater. 50, 22–35 (2012)

    Article  Google Scholar 

  31. Su S.F., Liao H.J.: Cavity expansion and cone penetration resistance in anisotropic clay. J. Chin. Inst. Eng. 24, 659–671 (2001)

    Article  Google Scholar 

  32. Tirupataiah Y., Sundararajan G.: A dynamic indentation technique for the characterization of the high strain rate plastic flow behaviour of ductile metals and alloys. J. Mech. Phys. Solids 39, 243–271 (1991)

    Article  Google Scholar 

  33. Warren T., Forrestal M.: Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. Int. J. Solids Struct. 35, 3737–3753 (1998)

    Article  Google Scholar 

  34. Warren T., Tabbara M.: Simulations of the penetration of 6061-t6511 aluminum targets by spherical-nosed var 4340 steel projectiles. Int. J. Solids Struct. 37, 4419–4435 (2000)

    Article  Google Scholar 

  35. Yu H.S., Houlsby G.T.: Finite cavity expansion in dilatant soils: loading analysis. Geotechnique 41, 173–183 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maranon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchely, M.F., Maranon, A. An engineering model for the penetration of a rigid-rod into a Cowper–Symonds low-strength material. Acta Mech 226, 2999–3010 (2015). https://doi.org/10.1007/s00707-015-1359-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1359-6

Keywords

Navigation