Skip to main content
Log in

Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The coupled three-dimensional flexural vibrations of a micro-rotating shaft–disk system, as a basic model for micro-engines, are investigated in this paper by considering small-scale effects utilizing the modified couple stress theory. Governing equations of motion are derived by the use of Hamilton’s principle. Then, implementing the Galerkin approach, an infinite set of ordinary differential equations is obtained for the system. With truncated two-term equations, expressions for the first two natural frequencies are written, and for the two corresponding modes, the maximum rotational speed up to which the system will be stable is analytically determined. Parametric studies on the results for different responses illustrate that the length-scale value has a significant effect on the natural frequencies of the shaft and the threshold of instability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genta G.: Dynamics of Rotating Systems. Springer, Berlin (2005)

    Book  Google Scholar 

  2. Adams M.L.: Rotating Machinery Vibration: From Analysis to Troubleshooting, 2nd edn. Taylor and Francis, London (2010)

    Google Scholar 

  3. Rankine W.: Centrifugal Whirling of Shafts. The Engineer, London (1869)

    Google Scholar 

  4. Jeffcott H.: The lateral vibration of loaded shafts in the neighborhood of a whirling speed—the effect of want of balance. Philos. Mag. 37, 304–314 (1919)

    Article  MATH  Google Scholar 

  5. Chun S.B., Lee C.W.: Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method. J Sound Vib. 189, 587–608 (1996)

    Article  Google Scholar 

  6. Plaut R., Wauer J.: Parametric, external and combination resonances in coupled flexural and torsional oscillations of an unbalanced rotating shaft. J Sound Vib. 5, 5778–5786 (1995)

    Google Scholar 

  7. Chang C.O., Cheng J.W.: Non-linear dynamics and instability of rotating shaft disk systems. J Sound Vib. 160, 433–455 (1993)

    Article  Google Scholar 

  8. Dimentberg M., Cobb E., Mensching J.: Self-Synchronization of transient rotations in multiple shaft systems. J. Vib. Control 7(2), 221–232 (2001)

    Article  MATH  Google Scholar 

  9. Luo R.: Free transverse vibration of rotating blades in a bladed disk assembly. Acta Mech. 223, 1389–1396 (2012)

    Google Scholar 

  10. Fawzi, M.A. El-Saeidy, Sticher, F.: Dynamics of a rigid rotor linear/nonlinear bearings system subject to rotating unbalance and base excitations. J. Vib. Control 16(3), 403–438 (2010)

  11. Tajalli S.A., Movahhedy M.R., Akbari J.: Chatter instability analysis of spinning micro-end mill with process damping effect via semi-discretization approach. Acta Mech. 15(2), 197–217 (2014)

    MathSciNet  Google Scholar 

  12. Ma H., Li H., Niu H., Song R., Wen B.: Numerical and experimental analysis of the first-and second-mode instability in a rotor-bearing system. Arch Appl Mech. 84(4), 519–554 (2014)

    Article  Google Scholar 

  13. Epstein, A.H., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K.S., Ehrich, F.E., Gauba, G., Ghodssi, C.G.R., Jacobson, S., Lang, J. H., Lin, C.-C., Mehra, A., Mur Miranda, J.O., Nagle, S., Orr E.P.D.J., Schmidt, M., Shirley, G., Spearing, S.M., Tan, C.S., Tzeng, Y.S., Waitz, I.A.: Power MEMS and microengines. In: IEEE Transducers ‘97 Conference, Chicago, IL (1997)

  14. Epstein, A.H., Jacobson, S., Protz, J., Livermore, C., Lang, J., Schmidt, M.: Shirtbutton-sized, micromachined, gas turbine generators. In: 39th Power sources Conference, Cherry Hill, NJ (2000)

  15. Epstein, A.H.: Millimeter-scale gas turbine engines, In: Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air, Atlanta, GA, USA, (2003)

  16. Jeon B., Park K., Jin Song S., Joo Y., Min K.: Design, fabrication, and testing of a MEMS microturbine. J. Mech. Sci. Technol. 19, 682–691 (2005)

    Article  Google Scholar 

  17. Chou S.K., Yang W.M., Chua K.J., Li J., Zhang K.L.: Development of micro power generators: a review. Appl. Energy 88, 1–16 (2011)

    Article  Google Scholar 

  18. Akane Iizuka M.T., Kaneko M., Nishi T., Saito K., Uchikoba F.: Millimeter scale MEMS air turbine generator by winding wire and multilayer magnetic ceramic circuit. Mod. Mech. Eng. 2, 41–46 (2012)

    Article  Google Scholar 

  19. Schubert, D.: Mems-Concept Using Micro Turbines for Satellite Power Supply, Solar POWER. In Tech (2012)

  20. Savoulides, N.: Development of a MEMS turbochargar and gas turbine engine. Ph.D. thesis, Department of Mechanical Engineering, MIT (2004)

  21. Teo, C.J.: MEMS turbomachinery rotordynamics; Modeling, design and testing. Ph.D. thesis, Department of Mechanical Engineering, MIT (2006)

  22. Zhang W.M., Meng G.: Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sens. Actuators A Phys. 127, 163–178 (2006)

    Article  Google Scholar 

  23. Zhang W.M., Meng G., Chen D., Zhou J.B., Chen J.Y.: Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model. J. Sound Vib. 309, 756–777 (2008)

    Article  Google Scholar 

  24. Meng G., Zhang W.M., Hai H., Li H., Di C.: Micro-rotor dynamics for micro-electro-mechanical systems (MEMS). Chaos Solit. Fract. 40, 538–562 (2009)

    Article  Google Scholar 

  25. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  26. McFarland A.W., Colton J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  MATH  Google Scholar 

  27. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solid Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  29. Park S.K., Gao X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  30. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  Google Scholar 

  31. Chen S.H., Feng B.: Size effect in micro-scale cantilever beam bending. Acta Mech. 219, 291–307 (2011)

    Article  Google Scholar 

  32. Kahrobaiyan M.H., Asghari M., Hoore M., Ahmadian M.T.: Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory. J. Vib. Control 18(5), 696–711 (2012)

    Article  MathSciNet  Google Scholar 

  33. Asghari M., Kahrobaiyan M.H., Nikfar M., Ahmadian M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223(6), 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rezazadeh G., Saeedi Vahdat A., Tayefeh-rezaei S., Cetinkaya C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223(6), 1137–1152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Voyiadjis G.Z., Abu Al-Rub R.K.: Gradient plasticity theory with a variable length scale parameter. Int. J. Solid Struct. 42, 3998–4029 (2005)

    Article  MATH  Google Scholar 

  36. Zhao M., Slaughter W.S., Li M., Mao S.X.: Material-length-scale-controlled Nano indentation size effects due to strain gradient plasticity. Acta Mater. 51, 4461–4469 (2003)

    Article  MATH  Google Scholar 

  37. Gomez J., Basaran C.: Determination of strain gradient plasticity length scale for microelectronics solder alloys. J. Electr. Package 129(2), 120–128 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Asghari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Asghari, M. Investigation of the small-scale effects on the three-dimensional flexural vibration characteristics of a basic model for micro-engines. Acta Mech 226, 3085–3096 (2015). https://doi.org/10.1007/s00707-015-1348-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1348-9

Keywords

Navigation