Skip to main content
Log in

Modelling microbuckling failure of a composite cantilever beam made from ultra high molecular-weight polyethylene fibres

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Experimental results have shown that composite cantilever beams with ultra high molecular-weight polyethylene fibres are collapsed by a new mode of microbuckling, which involves elastic bending and shearing of the plies, and plastic shear of the interfaces. Different finite element modelling strategies were employed in this study. Simulation results reveal that an enough number of interfacial cohesive layers, accurate partition of the shear stiffness between plies and interfaces, and accurate partition of the flexural stiffness between plies are important in predicting the collapse responses. The sensitivity of the predicted microbuckling responses to the overall effective shear modulus and interlaminar shear strength of long composite beams are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolez P.I., Vu-Khanh T.: Recent developments and needs in materials used for personal protective equipment and their testing. Int. J. Occup. Saf. Ergon. 15, 347–362 (2009)

    Article  Google Scholar 

  2. Smith P., Lemstra P.J., Kalb B., Pennings A.J.: Ultrahigh-strength polyethylene filaments by solution spinning and hot drawing. Polym. Bull. 1, 733–736 (1979)

    Article  Google Scholar 

  3. Smith P., Lemstra P.J.: Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci. 15, 505–514 (1980)

    Article  Google Scholar 

  4. Tan V.B.C., Shim V.P.W., Tay T.E.: Experimental and numerical study of the response of flexible laminates to impact loading. Int. J. Solids Struct. 40, 6245–6266 (2003)

    Article  Google Scholar 

  5. Tan V.B.C., Khoo K.J.L.: Perforation of flexible laminates by projectiles of different geometry. Int. J. Impact Eng. 31, 793–810 (2006)

    Article  Google Scholar 

  6. Greenhalgh E.S., Bloodworth V.M., Iannucci L., Pope D.: Fractographic observations on Dyneema\({^{\circledR}}\) composites under ballistic impact. Compos. Part A Appl. Sci. Manuf. 44, 51–62 (2013)

    Article  Google Scholar 

  7. Karthikeyan K., Russell B.P., Fleck N.A., O’Masta M., Wadley H.N.G., Deshpande V.S.: The soft impact response of composite laminate beams. Int. J. Impact Eng. 60, 24–36 (2013)

    Article  Google Scholar 

  8. Karthikeyan K., Russell B.P., Fleck N.A., Wadley H.N.G., Deshpande V.S.: The effect of shear strength on the ballistic response of laminated composite plates. Eur. J. Mech. A Solids. 4, 35–53 (2013)

    Article  Google Scholar 

  9. Ong C.W., Boey C.W., Hixson R.S., Sinibaldi J.O.: Advanced layered personal armor. Int. J. Impact Eng. 38, 369–383 (2011)

    Article  Google Scholar 

  10. Grujicic M., Glomski P.S., He T., Arakere G., Bell W.C., Cheeseman B.A.: Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers. J. Mater. Eng. Perform. 18, 1169–1182 (2009)

    Article  Google Scholar 

  11. Frissen, R., Peijs, T., Verlinde, A.: Modelling the ballistic impact behaviour of high-performance polyethylene fibre reinforced laminates. 16th International Symposium on Ballistics, San Francisco, USA (1996)

  12. Iannucci L., Pope D.: High velocity impact and armour design. Express Polym. Lett. 5, 262–272 (2011)

    Article  Google Scholar 

  13. Utomo B.D.H., Ernst L.J.: Detailed modelling of projectile impact on dyneema composite using dynamic properties. J. Solid Mech. Mater. Eng. 2, 707–717 (2008)

    Article  Google Scholar 

  14. Hazell P.J., Appleby-Thomas G.J., Trinquant X., Chapman D.J.: In-fiber shock propagation in Dyneema\({^{\circledR}}\). J. Appl. Phys. 110, 043504 (2011)

    Article  Google Scholar 

  15. Czechowski L., Jankowski J., Kubiak T.: Experimental tests of a property of composite material assigned for ballistic products. Fibers Text. East. Eur. 3, 61–66 (2012)

    Google Scholar 

  16. Marissen R.: Design with ultra strong polyethylene fibers. Mater. Sci. Appl. 2, 319–330 (2011)

    Google Scholar 

  17. Liu G., Thouless M.D., Deshpande V.S., Fleck N.A.: Collapse of a composite beam made from ultra high molecular-weight polyethylene fibres. J. Mech. Phys. Solids. 63, 320–335 (2014)

    Article  Google Scholar 

  18. McCrum N.G., Buckley C.P., Bucknall C.B.: Principles of Polymer Engineering. Oxford Science Publications, Oxford (2003)

    Google Scholar 

  19. Tang S., Greene M.S., Liu W.K.: Two-scale mechanism-based theory of nonlinear viscoelasticity. J. Mech. Phys. Solids. 60, 199–226 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Russell B.P., Karthikeyan K., Deshpande V.S., Fleck N.A.: The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate. Int. J. Impact Eng. 60, 1–9 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G. Modelling microbuckling failure of a composite cantilever beam made from ultra high molecular-weight polyethylene fibres. Acta Mech 226, 1255–1266 (2015). https://doi.org/10.1007/s00707-014-1247-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1247-5

Keywords

Navigation