Skip to main content
Log in

Group-theoretic method for efficient buckling analysis of prestressed space structures

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An efficient group-theoretic method is proposed for the buckling analysis of symmetric prestressed space structures. Tangent stiffness matrices and geometric stiffness matrices of trusses, cables, and frames are given, and thus, the proposed method is applicable not only to pin-jointed structures but also to more general structures with frame and cable elements. Important contribution of initial prestresses is considered in formulating the tangent stiffness matrices for the prestressed structures. By adopting irreducible representations of a symmetry group and projection operator theory, the associated stiffness matrices are converted to symmetry-adapted forms. Subsequently, the original buckling problem is decomposed into a series of independent subproblems with smaller dimensions, which obtain precise solutions but lead to significant reduction in computational cost. To describe the typical process for the group-theoretic method, efficient buckling analyses on four types of symmetric prestressed space structures composed of cables, trusses, and/or frames are carried out. The computational efficiency of the proposed method is dramatically improved in comparison with those of FEM and the conventional numerical method. Comparing the results with the corresponding ones from ABAQUS and published data, we verify that the proposed method is elegant and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitipornchai S., Kang W.J., Lam H.F., Albermani F.: Factors affecting the design and construction of Lamella suspen-dome systems. J. Constr. Steel Res. 61, 764–785 (2005)

    Article  Google Scholar 

  2. Ohsaki M., Zhang J.Y.: Stability conditions of prestressed pin-jointed structures. Int. J. Nonlinear Mech. 41, 1109–1117 (2006)

    Article  Google Scholar 

  3. Chen, Y., Feng, J., Zhuang, L., Xia, S.: Elastic stability of symmetric dome structures using group theory. In: Earth and space 2012@struction, and Operations in Challenging Environments, ASCE (2012)

  4. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  5. Ikeda K., Murota K., Yanagimoto A., Noguchi H.: Improvement of the scaled corrector method for bifurcation analysis using symmetry-exploiting block-diagonalization. Comput. Methods Appl. M. 196, 1648–1661 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kang W.J., Chen Z.H., Lam H.F., Zuo C.R.: Analysis and design of the general and outmost-ring stiffened suspen-dome structures. Eng. Struct. 25, 1685–1695 (2003)

    Article  Google Scholar 

  7. Ragavan V., Amde A.M.: Nonlinear buckling and postbuckling of cable-stiffened prestressed domes. ASCE J. Eng. Mech. 125, 1164–1172 (1999)

    Article  Google Scholar 

  8. Lazopoulos K.A.: Stability of an elastic cytoskeletal tensegrity model. Int. J. Solids Struct. 42, 3459–3469 (2005)

    Article  MATH  Google Scholar 

  9. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. Philadelphia: Society for Industrial and Applied Mathematics (1997)

  10. Mohan S.J., Pratap R.: A group theoretic approach to the linear free vibration analysis of shells with dihedral symmetry. J. Sound Vib. 252, 317–341 (2002)

    Article  Google Scholar 

  11. Kaveh A., Fazli H.: Graph coloration and group theory in dynamic analysis of symmetric finite element models. Finite Element Anal. Des. 43, 901–911 (2007)

    Article  MathSciNet  Google Scholar 

  12. Kaveh A., Rahami H., Nikbakht M.: Vibration analysis of regular structures by graph products: cable networks. Comput. Struct. 88, 588–601 (2010)

    Article  Google Scholar 

  13. Kaveh A., Nikbakht M., Rahami H.: Improved group theoretic method using graph products for the analysis of symmetric-regular structures. Acta Mech. 210, 265–289 (2010)

    Article  MATH  Google Scholar 

  14. Shojaei I., Kaveh A., Rahami H.: Analysis of structures convertible to repeated structures using graph products. Comput. Struct. 125, 153–163 (2013)

    Article  Google Scholar 

  15. Kaveh A.: Optimal Analysis of Structures by Concepts of Symmetry and Regularity. Springer, GmbH, Wien, New York (2013)

    Book  MATH  Google Scholar 

  16. Kaveh A., Nikbakht M.: Analysis of space towers using combined symmetry groups and product graphs. Acta Mech. 218, 133–160 (2011)

    Article  MATH  Google Scholar 

  17. Chen Y., Feng J.: Generalized eigenvalue analysis of symmetric prestressed structures using group theory. ASCE J. Comput. Civil Eng. 26, 488–497 (2012)

    Article  Google Scholar 

  18. Altmann S.L., Herzig P.: Point-Group Theory Tables. Clarendon Press, Oxford (1994)

    Google Scholar 

  19. Zingoni A.: A group-theoretic formulation for symmetric finite elements. Finite Element Anal. Des. 41, 615–635 (2005)

    Article  MathSciNet  Google Scholar 

  20. Zingoni A.: Group-theoretic exploitations of symmetry in computational solid and structural mechanics. Int. J. Numer. Methods Eng. 79, 253–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Healey T.J.: A group-theoretic approach to computational bifurcation problems with symmetry. Comput. Methods Appl. Mech. 67, 257–295 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ikeda K., Murota K.: Bifurcation analysis of symmetric structures using block-diagonalization. Comput. Methods Appl. Mech. 86, 215–243 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wohlever J.C., Healey T.J.: A group theoretic approach to the global bifurcation analysis of an axially compressed cylindrical shell. Comput. Methods Appl. Mech. 122, 315–349 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaveh A., Nikbakht M.: Stability analysis of hyper symmetric skeletal structures using group theory. Acta Mech. 200, 177–197 (2008)

    Article  MATH  Google Scholar 

  25. Koohestani K., Kaveh A.: Efficient buckling and free vibration analysis of cyclically repeated space truss structures. Finite Element Anal. Des. 46, 943–948 (2010)

    Article  Google Scholar 

  26. Koohestani K., Guest S.D.: A new approach to the analytical and numerical form-finding of tensegrity structures. Int. J. Solids Struct. 50, 2995–3007 (2013)

    Article  Google Scholar 

  27. Chen Y., Feng J., Wu Y.: Novel form-finding of tensegrity structures using ant colony systems. J. Mech. Robot. Trans. ASME 4, 310011–310017 (2012)

    Google Scholar 

  28. Chen Y., Feng J., Wu Y.: Prestress stability of pin-jointed assemblies using ant colony systems. Mech. Res. Commun. 41, 30–36 (2012)

    Article  Google Scholar 

  29. Vassart N., Laporte R., Motro R.: Determination of mechanism’s order for kinematically and statically indetermined systems. Int. J. Solids Struct. 37, 3807–3839 (2000)

    Article  MATH  Google Scholar 

  30. Guest S.D.: The stiffness of tensegrity structures. IMA J. Appl. Math. 76, 57–66 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guest S.D.: The stiffness of prestressed frameworks: a unifying approach. Int. J. Solids Struct. 43, 842–854 (2006)

    Article  MATH  Google Scholar 

  32. Torkamani M.A., Shieh J.: Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures. Eng. Struct. 33, 3516–3526 (2011)

    Article  Google Scholar 

  33. Chang J.: Derivation of the geometric stiffness matrix of a truss element from a simple physical concept. J. Int. Assoc. Shell Spat. Struct. 45, 22–28 (2004)

    Google Scholar 

  34. Yang Y., McGuire W.: Stiffness matrix for geometric nonlinear analysis. J. Struct. Eng. 112, 853–877 (1986)

    Article  Google Scholar 

  35. Kattan P.I.: MATLAB Guide to Finite Elements: An Interactive Approach. Springer, Berlin (2007)

    Google Scholar 

  36. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, London (2005)

    MATH  Google Scholar 

  37. Geiger, D.H.: Roof Structure. US Patent No. 4736553 (1988)

  38. Geiger, D.H., Stefaniuk, A., Chen, D.: The design and construction of two cable domes for the Korean Olympics. In: Proceedings of the IASS Symposium on Shells, Membranes and Space Frames. Osaka: Elsevier Science Publishers BV (1986)

  39. Kawaguchi M., Tatemichi I., Chen P.S.: Optimum shapes of a cable dome structure. Eng. Struct. 21, 719–725 (1999)

    Article  Google Scholar 

  40. Kawaguchi M., Abe M., Tatemichi I.: Design, tests and realization of suspen-dome system. J. Int. Assoc. Shell Spat. Struct. 40, 179–192 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Feng, J. Group-theoretic method for efficient buckling analysis of prestressed space structures. Acta Mech 226, 957–973 (2015). https://doi.org/10.1007/s00707-014-1234-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1234-x

Keywords

Navigation