Skip to main content
Log in

Bifurcation in rolling of non-spherical grains and fluctuations in macroscopic friction

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The presence of granular matter between the sliding blocks (such as for example gouge in rock joints and faults) considerably affects friction. The effect of grain movement and rolling is often modelled by considering them as spherical. This paper investigates the influence of the grain/particle shape. We found that rolling of non-spherical particles leads to an apparent friction reduction related to the effect of the moment equilibrium about a point of contact. The collective behaviour of rolling non-spherical particles is affected by their interaction by the elasticity of the material of the sliding blocks. In the case of identical and symmetrical particles, there exists a uniform solution whereby all particles undergo identical displacements. This solution is, however, unstable; at certain magnitudes of the friction force and the corresponding values of the displacement the solution bifurcates such that different particles show different displacements. When many particles of different sizes are rolling without interaction, the friction force fluctuates, and as the displacement increases, the fluctuations reach a steady state. The amplitudes of the fluctuations depend upon the shape factor; they are the smallest when the particles have a square shape and considerably increase as the period of particle rolling approaches the diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowden F.P., Tabor D.: The friction and lubrication of solids, vol. 2. Clarendon, Oxford (1964)

    Google Scholar 

  2. Dieterich J.H.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)

    Article  Google Scholar 

  3. Panagouli O.K., Panagiotopoulos P.D., Mistakidis E.S.: Friction laws of fractal type and the corresponding contact problems. Chaos Solitons Fractals 5, 2109–2119 (1995)

    Article  Google Scholar 

  4. Brace W.F., Byerlee J.D.: Stick-slip as a mechanism for earthquakes. Science 153, 990 (1966)

    Article  Google Scholar 

  5. Scholz C.H., Wyss M., Smith S.W.: Seismic and aseismic slip on the San Andreas fault. J. Geophys. Res. 74, 2049–2069 (1969)

    Article  Google Scholar 

  6. Renshaw C.E., Schulson E.M.: Non-linear rate dependent deformation under compression due to state variable friction. Geophys Res Lett 25, 2205–2208 (1998)

    Article  Google Scholar 

  7. Olsson H., Åström K.J., de Wit C.C., Gäfvert M., Lischinsky P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    Article  MATH  Google Scholar 

  8. Ruina A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10,359–10,370 (1983)

    Article  Google Scholar 

  9. Sone H., Shimamoto T.: Frictional resistance of faults during accelerating and decelerating earthquake slip. Nat. Geosci. 2, 705–708 (2009)

    Article  Google Scholar 

  10. Scott D.R., Marone C.J., Sammis C.D.: The apparent friction of granular fault gouge in sheared layers. J. Geophys. Res. 99, 7231–7246 (1994)

    Article  Google Scholar 

  11. Urbakh M., Klafter J., Gourdon D., Israelachvili J.: The nonlinear nature of friction. Nat. Geosci. 430, 525–528 (2004)

    Google Scholar 

  12. Marone C.: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69 (1998)

    Article  Google Scholar 

  13. Di Toro G., Goldsby D.L., Tullis T.E.: Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004)

    Article  Google Scholar 

  14. Jaeger H.M., Nagel S.R., Behringer R.P.: The physics of granular materials. Phys. Today 49, 32–38 (1996)

    Article  Google Scholar 

  15. Vardoulakis I.: Bifurcation analysis of the triaxial test on sand samples. Acta Mech. 32, 35–54 (1979)

    Article  MATH  Google Scholar 

  16. Kishino Y., Thornton C.: Discrete element approaches. In: Oda, M., Iwashita, K. (eds) Mechanics of Granular Materials. An Introduction, pp. 147–223. Balkema, Rotterdam, Brookfield (1999)

    Google Scholar 

  17. Mueth D.M., Debregeas G.F., Karczmar G.S., Eng P.J., Nagel S.R., Jaeger H.M.: Signatures of granular microstructure in dense shear flows. Nature 406, 385 (2000)

    Article  Google Scholar 

  18. Desrues J., Viggiani G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 28, 279–321 (2004)

    Article  Google Scholar 

  19. Rechenmacher A., Abedi S., Chupin O.: Evolution of force chains in shear bands in sands. Geotechnique 60, 343–351 (2010)

    Article  Google Scholar 

  20. Rechenmacher A.: Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Solids 54, 22–45 (2006)

    Article  MATH  Google Scholar 

  21. Herrmann H.J.: Physics of granular media. Chaos Solitons Fractals 6, 203–212 (1995)

    Article  Google Scholar 

  22. Bagi, K., Kuhn, M.R.:Different rolling measures for granular assemblies. In: Vermeer, P.A., Ehlers, W., Hermann, H.J., Ramm, E. (eds.), Modelling of Cohesive-Frictional Materials, pp. 3–12. Taylor and Francis Group, London

  23. Allonso-Marroquin F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: Effect of rolling on dissipation in fault gouge. Phys. Rev. E 74, 0301306 (2006)

    Article  Google Scholar 

  24. Dyskin, A.V., Pasternak, E.:Friction and localisation associated with non-spherical particles, advances in bifurcation and degradation in geomaterials. In: Bonelli, S. Dascalu, C., Nicot, F. (eds.), Proceedings of the 9th International Workshop on Bifurcation and Degradation in Geomaterials, pp. 53–58. Springer, Berlin (2011)

  25. Dyskin, A.V., Pasternak, E.: Rock mass instability caused by incipient block rotation. In: Qihu, Q., Zhou, Y. (eds.), Harmonising Rock Engineering and the Environment. Proceedings of th International Congress on Rock Mechanics. CRC Press/Balkema, 4 pp (2011)

  26. Dyskin A.V., Pasternak E.: Mechanical effect of rotating non-spherical particles on failure in compression. Philos. Mag. 92, 3451–3473 (2012)

    Article  Google Scholar 

  27. Levy, H, Lessman, F.: Finite Difference Equations. Dover Publications, New York (1961)

  28. Mitaim, S., Dagrain, F., Richard, T., Detournay, E., Drescher, A.: A novel apparatus to determine the rock strength parameters. In: Proceedings of the 9th National Convention on Civil Engineering, Petchaburi, Thailand (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dyskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyskin, A.V., Pasternak, E. Bifurcation in rolling of non-spherical grains and fluctuations in macroscopic friction. Acta Mech 225, 2217–2226 (2014). https://doi.org/10.1007/s00707-014-1133-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1133-1

Keywords

Navigation