Skip to main content
Log in

Rapid oxidation of dibenzothiophene in model fuel under ultrasound irradiation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An experimental investigation was conducted on the ultrasound-assisted oxidative desulfurization (UAOD) of a model sulfur compound (i.e., dibenzothiophene) in toluene as a model light fuel oil. Hydrogen peroxide–formic acid was used as the oxidation system. The main aim of the present work was to reduce the required reaction time of this oxidation system using ultrasound irradiation. Response surface methodology, Box–Behnken design, has been applied to find the optimum conditions of the UAOD process and also to study the influences of various operating parameters. A reasonable mathematical model was obtained for the prediction of sulfur conversion. More than 97 % sulfur conversion was achieved under the optimum conditions (i.e., oxidant to sulfur molar ratio of 26.7, acid to sulfur molar ratio of 74.6, ultrasound power per fuel oil volume of 7 W/cm3, and temperature of 50 °C). It should be noted that 95 % sulfur conversion was achieved in only 80 s sonication under the optimum reaction conditions through generation of very fine emulsion between the aqueous and organic phases. This low reaction time improves the performance of the present oxidation system in industrial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sobati MA, Dehkordi AM, Shahrokhi M (2010) Chem Eng Technol 33:1515

    Article  CAS  Google Scholar 

  2. Choi AES, Roces S, Dugos N, Futalan CM, Lin SS, Wan MW (2014) J Taiwan Ins Chem Eng 45:2935

    Article  CAS  Google Scholar 

  3. Chen TC, Shen YH, Lee WJ, Lin CC, Wan MW (2013) J Cleaner Prod 39:129

    Article  CAS  Google Scholar 

  4. Zhang J, Wang G, Zhang L, Fu X, Liu Y (2014) React Kinet Mech Catal 113:347

    Article  CAS  Google Scholar 

  5. Dehkordi AM, Sobati MA, Nazem MA (2009) Chin J Chem Eng 17:869

    Article  CAS  Google Scholar 

  6. Deshpande A, Bassi A, Prakash A (2005) Energy Fuels 19:28

    Article  CAS  Google Scholar 

  7. Calcio GE, Carnaroglio D, Boffa L, Cravotto G, Moreira EM, Nunes MA, Dressler VL, Flores EM (2014) Ultrason Sonochem 21:283

  8. Wan MW, Biel LCC, Lu MC, de Leon R, Arco S (2012) Desalin Water Treat 47:96

    Article  CAS  Google Scholar 

  9. Duarte FA, Mello PDA, Bizzi CA, Nunes MAG, Moreira EM, Alencar MS, Motta HN, Dressler VL, Flores ÉM (2011) Fuel 90:2158

    Article  CAS  Google Scholar 

  10. Shayegan Z, Razzaghi M, Niaei A, Salari D, Tabar MTS, Akbari AN (2013) Korean J Chem Eng 30:1751

    Article  CAS  Google Scholar 

  11. Moradi S, Vossough M, Feilizadeh M, Zakeri SME, Mohammadi MM, Rashtchian D, Booshehri AY (2014) Res Chem Intermed 41:4151

    Article  Google Scholar 

  12. Fan DZQ, Dai Y (2009) Pet Sci Technol 27:302

    Article  CAS  Google Scholar 

  13. De Filippis P, Scarsella M, Verdone N (2010) Ind Eng Chem Res 49:4594

    Article  Google Scholar 

  14. Yang RT, Hernández-Maldonado AJ, Yang FH (2003) J Sci 301:79

    Article  CAS  Google Scholar 

  15. Villasenor F, Loera O, Campero A, Viniegra-Gonzalez G (2004) J Fuel Process Technol 86:49

    Article  CAS  Google Scholar 

  16. Campos-Martin JM, Capel-Sanchez M, Perez-Presas P, Fierro JLG (2010) J Chem Technol Biotechnol 85:879

    Article  CAS  Google Scholar 

  17. Song H, Cui X, Jiang B, Song H, Wang D, Zhang Y (2015) Res Chem Intermed 41:365

  18. Lu MC, Biel LCC, Wan MW, de Leon R, Arco S (2014) Int J Green Energy 11:833

    Article  CAS  Google Scholar 

  19. Mello PDA, Duarte FA, Nunes MA, Alencar MS, Moreira EM, Korn M, Dressler VL, Flores EM (2009) Ultrason Sonochem 16:732

  20. Sobati MA, Dehkordi AM, Shahrokhi M (2010) Fuel Process Technol 91:1386

    Article  CAS  Google Scholar 

  21. Dehkordi AM, Kiaei Z, Sobati MA (2009) Fuel Process Technol 90:435

    Article  CAS  Google Scholar 

  22. Sahle-Demessie E, Devulapelli VG (2008) Appl Catal B 84:408

    Article  CAS  Google Scholar 

  23. Dehkordi AM, Sobati MA, Nazem M (2013) Energy Sources Part A 35:226

    Article  CAS  Google Scholar 

  24. Sobati MA, Dehkordi AM, Shahrokhi M, Ebrahimi AA (2010) Ind Eng Chem Res 49:9339

    Article  CAS  Google Scholar 

  25. Carnaroglio D, Gaudino EC, Mantegna S, Moreira EM, Vicente de Castro A, Flores EM, Cravotto G (2014) Energy Fuels 28:1854

  26. Bolla MK, Choudhury HA, Moholkar VS (2012) Ind Eng Chem Res 51:9705

    Article  CAS  Google Scholar 

  27. Bhasarkar JB, Chakma S, Moholkar VS (2015) Ultrason Sonochem 24:98

    Article  CAS  Google Scholar 

  28. Bhasarkar JB, Chakma S, Moholkar VS (2013) Ind Eng Chem Res 52:9038

    Article  CAS  Google Scholar 

  29. Dai Y, Qi Y, Zhao D (2009) Pet Chem 49:436

    Article  Google Scholar 

  30. Gonzalez LA, Kracke P, Green WH, Tester JW, Shafer LM, Timko MT (2012) Energy Fuels 26:5164

    Article  CAS  Google Scholar 

  31. Al-Lal AM, Bolonio D, Llamas A, Lapuerta M, Canoira L (2015) Fuel 150:208

    Article  CAS  Google Scholar 

  32. Te M, Fairbridge C, Ring Z (2001) Appl Catal A 219:267

  33. Tang Q, Lin S, Cheng Y, Liu S, Xiong JR (2013) Ultrason Sonochem 20:1168

    Article  CAS  Google Scholar 

  34. Wang L, Chen Y, Du L, Li S, Cai H, Liu W (2013) Fuel 105:353

    Article  Google Scholar 

  35. Mei H, Mei B, Yen TF (2003) Fuel 82:405

    Article  CAS  Google Scholar 

  36. Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M (1999) Philos Trans R Soc A 357:335

    Article  CAS  Google Scholar 

  37. Suslick KS (1989) Sci Am 260:80

    Article  CAS  Google Scholar 

  38. Liu L, Zhang Y, Tan W (2014) Ultrason Sonochem 21:970

    Article  CAS  Google Scholar 

  39. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965

    Article  CAS  Google Scholar 

  40. Montgomery DC, Runger GC (2002) Applied statistics and probability for engineers. Wiley, New York

    Google Scholar 

  41. Ferreira SC, Bruns R, Ferreira H, Matos G, David J, Brandao G, da Silva EP, Portugal L, Dos Reis P, Souza A (2007) Anal Chim Acta 597:179

    Article  CAS  Google Scholar 

  42. Wu Z, Ondruschka B (2010) Ultrason Sonochem 17:1027

    Article  CAS  Google Scholar 

  43. De Filippis P, Scarsella M, Verdone N (2009) Ind Eng Chem Res 48:1372

    Article  Google Scholar 

  44. De Filippis P, Liuzzo G, Scarsella M, Verdone N (2011) Ind Eng Chem Res 50:10452

    Article  Google Scholar 

  45. Mason TJ (1996) Advances in sonochemistry. Greenwich, London

    Google Scholar 

  46. Znidarcic A, Mettin R, Dular M (2015) Ultrason Sonochem 22:482

    Article  CAS  Google Scholar 

  47. Khodaei B, Sobati MA, Shahhosseini S (2016) Clean Technol Environ. Policy. doi:10.1007/s10098-016-1186-z

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the supports provided by National Iranian Oil Engineering and Construction Company (NIOEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amin Sobati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, B., Sobati, M.A. & Shahhosseini, S. Rapid oxidation of dibenzothiophene in model fuel under ultrasound irradiation. Monatsh Chem 148, 387–396 (2017). https://doi.org/10.1007/s00706-016-1801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1801-z

Keywords

Navigation