Skip to main content
Log in

A DFT and PM6 study of free radical scavenging activity of ellagic acid

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Reaction enthalpies related to mechanisms of free radical scavenging activity of ellagic acid and its phenoxide anions were calculated by density functional theory and the semiempirical PM6 method. In addition to the gas phase, calculations are performed for water and benzene as the solvents, which may represent biological liquids and the membrane lipids, i.e., a natural environment for antiradical action. The thermodynamically favored mechanism depends on the polarity of reaction media, deprotonation degree of ellagic acid as well as the properties of scavenging radicals. The most acidic 3-OH group of ellagic acid is the active site for radical inactivation. The ellagate monoanions and dianions possess progressively better scavenging potency than unionized ellagic acid. The sequential proton loss electron transfer mechanism is the preferred reaction pathway for the ellagate monoanion and dianion in water. In benzene, ellagic acid inactivates free radicals by the hydrogen atom transfer mechanism. In the gas phase the latter mechanism is favored for all ellagic acid species.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clifford MN, Scalbert A (2000) J Sci Food Agric 80:1118

    Article  CAS  Google Scholar 

  2. Landete JM (2011) Food Res Int 44:1150

    Article  CAS  Google Scholar 

  3. Larrosa M, Garcia-Conesa MT, Espin JC, Tomas-Barberan FA (2010) Mol Asp Med 31:513

    Article  CAS  Google Scholar 

  4. Larrosa M, Tomas-Barberan FA, Espin JC (2006) J Nutr Biochem 17:611

    Article  CAS  Google Scholar 

  5. Espin JC, Gonzalez-Barrio R, Cedra B, Lopez-Bote C, Rey AI, Tomas-Barberan FA (2007) J Agric Food Chem 55:10476

    Article  CAS  Google Scholar 

  6. Quideau S, Deffieux D, Douat-Casassus C, Pouysegu L (2011) Angew Chem Int Ed 50:586

    Article  CAS  Google Scholar 

  7. Vattem DA, Shetty K (2005) J Food Biochem 29:234

    Article  CAS  Google Scholar 

  8. Kuo M-Y, Ou H-C, Lee W-J, Kuo W-W, Hwang L-L, Song T-Y, Huang C-Y, Chiu T-H, Tsai K-L, Tsai C-S, Sheu WH-H (2011) J Agric Food Chem 59:5100

    Article  CAS  Google Scholar 

  9. Bala I, Bhardwaj V, Hariharan S, Ravi Kumar MNV (2006) J Pharm Biomed Anal 40:206

    Article  CAS  Google Scholar 

  10. Ji H-F, Zhang H-Y, Shen L (2006) Bioorg Med Chem Lett 16:4095

    Article  CAS  Google Scholar 

  11. Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) J Org Chem 74:2699

    Article  CAS  Google Scholar 

  12. Priyadarsini KI, Khopde SM, Kumar SS, Mohan H (2002) J Agric Food Chem 50:2200

    Article  CAS  Google Scholar 

  13. Hasegawa M, Terauchi M, Kikuchi Y, Nakao A, Okubo J, Yoshinaga T, Hiratsuka H, Kobayashi M, Hoshi T (2003) Monatsh Chem 134:811

    Article  CAS  Google Scholar 

  14. Munoz-Munoz JL, Garcia-Molina F, Garcia-Molina M, Tudela J, Garcia-Canovas F, Rodriguez-Lopez JN (2009) IUBMB Life 61:171

    Article  Google Scholar 

  15. Wright J, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  16. Klein E, Lukeš V, Ilčin M (2007) Chem Phys 336:51

    Article  CAS  Google Scholar 

  17. Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222

    Article  CAS  Google Scholar 

  18. Foti MC, Daquino C, Geraci C (2004) J Org Chem 69:2309

    Article  CAS  Google Scholar 

  19. Zhang H-Y, Ji H-F (2006) New J Chem 30:503

    Article  CAS  Google Scholar 

  20. Rimarčik J, Lukeš V, Klein E, Ilčin M (2010) J Mol Struct (Theochem) 952:25

    Article  Google Scholar 

  21. Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012) Food Chem 135:2070

    Article  Google Scholar 

  22. Nenadis N, Tsimidou MZ (2012) Food Res Int 48:538

    Article  CAS  Google Scholar 

  23. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288

    Article  CAS  Google Scholar 

  24. Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012) Food Chem 134:1754

    Article  Google Scholar 

  25. Frankel EN (2007) Antioxidants in food and biology: facts and fiction. chapter 3. The Oily Press, Bridgwater

  26. Košinova P, Berka K, Wykes M, Otyepka M, Trouillas P (2012) J Phys Chem B 116:1309

    Article  Google Scholar 

  27. Sato T, Kataoka M (1997) J Heterocyclic Chem 34:665

    Article  CAS  Google Scholar 

  28. Huetz P, Mavaddat N, Mavri J (2005) J Chem Inf Model 45:1564

    Article  CAS  Google Scholar 

  29. Kavuru P, Aboarayes D, Arora KK, Clarke HD, Kennedy A, Marshall L, Ong TT, Perman J, Pujari T, Wojtas L, Zaworotko MJ (2010) Cryst Growth Des 10:3568

    Article  CAS  Google Scholar 

  30. Rossi M, Erlebacher J, Zacharias DE, Carrell HL, Iannucci B (1991) Carcinogenesis 12:2227

    Article  CAS  Google Scholar 

  31. Mathieson AMcL, Poppleton BJ (1968) Acta Cryst B 24:1456

    Article  CAS  Google Scholar 

  32. Clarke HD, Arora KK, Bass H, Kavuru P, Ong TT, Pujari T, Wojtas L, Zaworotko MJ (2010) Cryst Growth Des 10:2152

    Article  CAS  Google Scholar 

  33. Zhang J, Xiong Y, Peng B, Gao H, Zhou Z (2011) Comp Theor Chem 963:148

    Article  CAS  Google Scholar 

  34. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison

  35. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JAJr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick AD, Rabuck KD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09, revision A.1-SMP. Gaussian Inc., Wallingford

  37. MOPAC2009™ (2009) Stewart Computational Chemistry, Version 11.366W. http://openmopac.net/MOPAC2009.html

  38. Jurd L (1959) J Am Chem Soc 81:4610

    Article  CAS  Google Scholar 

  39. Hewitt DG, Nelson PF (1965) Holzforschung 19:97

    Article  CAS  Google Scholar 

  40. Vaganek A, Rimarčik J, Lukeš V, Klein E (2012) Comp Theor Chem 991:192

    Article  CAS  Google Scholar 

  41. Shahidi F, Janitha PK, Wanasundara PD (1992) Crit Rev Food Sci Nutr 32:67

    Article  CAS  Google Scholar 

  42. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem A 108:4916

    Article  CAS  Google Scholar 

  43. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux J-L (2006) Food Chem 97:679

    Article  CAS  Google Scholar 

  44. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM (2001) Free Radic Biol Med 31:869

    Article  CAS  Google Scholar 

  45. Shen L, Zhang H-Y, Ji H-F (2005) Org Lett 7:243

    Article  CAS  Google Scholar 

  46. Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux J-L (2007) J Phys Chem A 111:1138

    Article  CAS  Google Scholar 

  47. Estevez L, Otero N, Mosquera RA (2010) J Phys Chem B 114:9706

    Article  CAS  Google Scholar 

  48. Kondo O, Benson SW (1984) J Phys Chem 88:6675

    Article  CAS  Google Scholar 

  49. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  50. Black G, Simmie JM (2010) J Comput Chem 31:1236

    CAS  Google Scholar 

  51. Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114

    Article  CAS  Google Scholar 

  52. Galano A, Macias-Ruvalcaba NA, Medina-Campos ON, Pedraza-Chaverri J (2010) J Phys Chem B 114:6625

    Article  CAS  Google Scholar 

  53. Marković Z, Dimitrić Marković JM, Doličanin ĆB (2010) Theor Chem Acc 127:69

    Article  Google Scholar 

  54. Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) J Phys Chem A 113:13913

    Article  CAS  Google Scholar 

  55. Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649

    Article  CAS  Google Scholar 

  56. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

  57. Namazian M, Lin CY, Coote ML (2010) J Chem Theory Comput 6:2721

    Article  CAS  Google Scholar 

  58. Carpenter JE, Weinhold F (1988) J Mol Struct (Theochem) 169:41

    Article  Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  60. Stewart JJP (2009) J Mol Model 15:765

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is cofinanced by the Ministry of Science of the Republic of Serbia (Project No. 172015 and Serbia-Croatia Bilateral Agreement 2011-2012) as well as by the Ministry of Science, Education, and Sports of the Republic of Croatia (Projects Nos. 079-0000000-3211, 098-1770495-2919, and Croatia-Serbia Bilateral Agreement 2011-2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoran Marković or Dragan Amić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marković, Z., Milenković, D., Đorović, J. et al. A DFT and PM6 study of free radical scavenging activity of ellagic acid. Monatsh Chem 144, 803–812 (2013). https://doi.org/10.1007/s00706-013-0949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-0949-z

Keywords

Navigation