Skip to main content

Advertisement

Log in

A detailed analysis of codon usage patterns and influencing factors in Zika virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recent outbreaks of Zika virus (ZIKV) in Africa, Latin America, Europe, and Southeast Asia have resulted in serious health concerns. To understand more about evolution and transmission of ZIKV, detailed codon usage analysis was performed for all available strains. A high effective number of codons (ENC) value indicated the presence of low codon usage bias in ZIKV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations between nucleotide compositions at third codon positions and ENCs. Correlation analysis between Gravy values, Aroma values and nucleotide compositions at third codon positions also indicated some influence of natural selection. However, the low codon adaptation index (CAI) value of ZIKV with reference to human and mosquito indicated poor adaptation of ZIKV codon usage towards its hosts, signifying that natural selection has a weaker influence than mutational pressure. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn I, Son HS (2012) Evolutionary analysis of human-origin influenza A virus (H3N2) genes associated with the codon usage patterns since 1993. Virus Genes 44:198–206

    Article  CAS  PubMed  Google Scholar 

  2. Belalov IS, Lukashev AN (2013) Causes and implications of codon usage bias in RNA viruses. PLoS One 8:e56642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D (2014) Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 19

  4. Butt AM, Nasrullah I, Tong Y (2014) Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS One 9:e90905

    Article  PubMed  PubMed Central  Google Scholar 

  5. Butt AM, Nasrullah I, Qamar R, Tong Y (2016) Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infect 5:e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Y, Shi Y, Deng H, Gu T, Xu J, Ou J, Jiang Z, Jiao Y, Zou T, Wang C (2014) Characterization of the porcine epidemic diarrhea virus codon usage bias. Infect Genet Evol 28:95–100

    Article  CAS  PubMed  Google Scholar 

  7. Cristina J, Moreno P, Moratorio G, Musto H (2015) Genome-wide analysis of codon usage bias in Ebolavirus. Virus Res 196:87–93

    Article  CAS  PubMed  Google Scholar 

  8. Cristina J, Fajardo A, Sonora M, Moratorio G, Musto H (2016) A detailed comparative analysis of codon usage bias in Zika virus. Virus Res 223:147–152

    Article  CAS  PubMed  Google Scholar 

  9. Dorn A, Kippenberger S (2008) Clinical application of CpG-, non-CpG-, and antisense oligodeoxynucleotides as immunomodulators. Curr Opin Mol Ther 10:10–20

    CAS  PubMed  Google Scholar 

  10. Faye O, Diallo D, Diallo M, Weidmann M, Sall AA (2013) Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J 10:311

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gao D, Lou Y, He D, Porco TC, Kuang Y, Chowell G, Ruan S (2016) Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci Rep 6:28070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  13. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC (2012) Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu JS, Wang QQ, Zhang J, Chen HT, Xu ZW, Zhu L, Ding YZ, Ma LN, Xu K, Gu YX, Liu YS (2011) The characteristic of codon usage pattern and its evolution of hepatitis C virus. Infect Genet Evol 11:2098–2102

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Lara-Ramírez EE, Salazar MI, MeJ López-López, Salas-Benito JS, Sánchez-Varela A, Guo X (2014) Large-scale genomic analysis of codon usage in dengue virus and evaluation of its phylogenetic dependence. Biomed Res Int 2014:851425

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levin DB, Whittome B (2000) Codon usage in nucleopolyhedroviruses. J Gen Virol 81:2313–2325

    Article  CAS  PubMed  Google Scholar 

  18. Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 22:3174–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucey DR (2016) Time for global action on Zika virus epidemic. BMJ 352:i781

    Article  PubMed  Google Scholar 

  20. Marano G, Pupella S, Vaglio S, Liumbruno GM, Grazzini G (2015) Zika virus and the never-ending story of emerging pathogens and transfusion medicine. Blood Transfus 5:1–6

    Google Scholar 

  21. Marín A, Bertranpetit J, Oliver JL, Medina JR (1989) Variation in G + C-content and codon choice: differences among synonymous codon groups in vertebrate genes. Nucleic Acids Res 17:6181–6189

    Article  PubMed  PubMed Central  Google Scholar 

  22. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21:359–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peden J (1999) Analysis of codon usage. Department of Genetics, University of Nottingham, Nottingham

    Google Scholar 

  24. Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, Dar O, Mattes F, Kidd M, Ippolito G, Azhar EI, Zumla A (2016) Rapid spread of Zika virus in the americas—implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int J Infect Dis 44:11–15

    Article  PubMed  Google Scholar 

  25. Puigbò P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  26. Puigbò P, Bravo IG, Garcia-Vallvé S (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinform 9:65

    Article  Google Scholar 

  27. Rubin EJ, Greene MF, Baden LR (2016) Zika Virus and Microcephaly. N Engl J Med 374:984–985

    Article  PubMed  Google Scholar 

  28. Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    Article  CAS  PubMed  Google Scholar 

  29. Singh NK, Tyagi A, Kaur R, Verma R, Gupta PK (2016) Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus. Virus Res 221:58–65

    Article  CAS  PubMed  Google Scholar 

  30. Tulloch F, Atkinson NJ, Evans DJ, Ryan MD, Simmonds P (2014) RNA virus attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA dinucleotide frequencies. Elife 3:e04531

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Hemert F, Berkhout B (2016) Nucleotide composition of the Zika virus RNA genome and its codon usage. Virol J 13:95

    Article  PubMed  PubMed Central  Google Scholar 

  32. WHO (2016) Zika virus microcephaly and Guillain–Barré syndrome situation report. World Health Organization

  33. Wreschner DH, McCauley JW, Skehel JJ, Kerr IM (1981) Interferon action–sequence specificity of the ppp(A2’p)nA-dependent ribonuclease. Nature 289:414–417

    Article  CAS  PubMed  Google Scholar 

  34. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Jia R, Zhang Z, Lu Y, Wang M, Zhu D, Chen S, Liu M, Yin Z, Cheng A (2015) Analysis of synonymous codon usage pattern in duck circovirus. Gene 557:138–145

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Wang M, Liu WQ, Zhou JH, Chen HT, Ma LN, Ding YZ, Gu YX, Liu YS (2011) Analysis of codon usage and nucleotide composition bias in polioviruses. Virol J 8:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang S, Li D (2016) Zika virus and Zika viral disease. Chin J Virol 32:121–127

    Google Scholar 

  38. Qin H, Wu WB, Comeron JM, Kreitman M, Li WH (2004) Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes. Genetics 168:2245–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Freire CCM, Iamarino A, Neto DFL, Sall AA, Zanotto PMA (2015) Spread of the pandemic Zika virus lineage is associated with NS1 codon usage adaptation in humans. bioRxiv. doi:10.1101/032839

    Google Scholar 

Download references

Acknowledgements

We are thankful to Director, School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niraj K. Singh.

Ethics declarations

Funding information

There was no role of any funding agencies in the current study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.K., Tyagi, A. A detailed analysis of codon usage patterns and influencing factors in Zika virus. Arch Virol 162, 1963–1973 (2017). https://doi.org/10.1007/s00705-017-3324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3324-2

Keywords

Navigation