Skip to main content

Advertisement

Log in

Targeting the rhesus macaque TRIM5α gene to enhance the susceptibility of CD4+ T cells to HIV-1 infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The host range of human immunodeficiency virus type 1 (HIV-1) is extremely narrow, which has hampered the establishment of non-human primate models for HIV-1 infection. The species-specific innate immune factor tripartite motif 5 alpha (TRIM5α) is a key molecule that confers potent resistance against HIV-1 infection. In this study, we targeted the TRIM5α gene of rhesus macaques (rhTRIM5α) using the transcription activator-like effector nuclease (TALEN) to study the effect on HIV-1 infection. CD4+ T cells were separated from the peripheral blood of rhesus macaques by magnetic cell sorting, and the positive rate was greater than 99%. TALEN plasmids targeting rhTRIM5α were constructed and introduced into CD4+ T cells by electroporation, with a transfection efficiency of approximately 25%. The genome of the targeted cells was extracted, and the target efficiency was analyzed by T7E1 enzyme digestion. After sorting the positive transductants, the TALENs induced rhTRIM5α mutations at a rate of more than 40%. The ability of the HIV-1 virus to infect the targeted cells was demonstrated by ELISA. The results showed that targeting rhTRIM5α enhanced the susceptibility to HIV-1 infection. This finding will pave the way for further establishment of a new rhesus macaque model for HIV-1 studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roberts RB, Murray HW, Rubin BY, Masur H (1984) Opportunistic infections and impaired cell-mediated immune responses in patients with the acquired immune deficiency syndrome. Trans Am Clin Climatol Assoc 95:40–51

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Isanaka S, Mugusi F, Hawkins C, Spiegelman D, Okuma J, Aboud S, Guerino C, Fawzi WW (2012) Effect of high-dose vs standard-dose multivitamin supplementation at the initiation of HAART on HIV disease progression and mortality in Tanzania: a randomized controlled trial. JAMA 308:1535–1544

    Article  CAS  PubMed  Google Scholar 

  3. Bhatti AB, Usman M, Kandi V (2016) Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral therapy. Cureus 8:e515

    PubMed  PubMed Central  Google Scholar 

  4. Hentrich M, Maretta L, Chow KU, Bogner JR, Schurmann D, Neuhoff P, Jager H, Reichelt D, Vogel M, Ruhnke M, Oette M, Weiss R, Rockstroh J, Arasteh K, Mitrou P (2006) Highly active antiretroviral therapy (HAART) improves survival in HIV-associated Hodgkin’s disease: results of a multicenter study. Ann Oncol 17:914–919

    Article  CAS  PubMed  Google Scholar 

  5. Stephenson KE, D’couto HT, Barouch DH (2016) New concepts in HIV-1 vaccine development. Curr Opin Immunol 41:39–46

    Article  CAS  PubMed  Google Scholar 

  6. Policicchio BB, Pandrea I, Apetrei C (2016) Animal models for HIV cure research. Front Immunol 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Henning TR, Mcnicholl JM, Vishwanathan SA, Kersh EN (2015) Macaque models of enhanced susceptibility to HIV. Virol J 12:90

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jia X, Zhao Q, Xiong Y (2015) HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 31:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  CAS  PubMed  Google Scholar 

  10. Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–573

    Article  CAS  PubMed  Google Scholar 

  11. Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15:73–78

    Article  CAS  PubMed  Google Scholar 

  12. Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, Cathomen T (2014) TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42:6762–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Himathongkham S, Luciw PA (1996) Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology 219:485–488

    Article  CAS  PubMed  Google Scholar 

  14. Nakayama EE, Shioda T (2015) Impact of TRIM5alpha in vivo. AIDS 29:1733–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evans DT, Silvestri G (2013) Nonhuman primate models in AIDS research. Curr Opin HIV AIDS 8:255–261

    PubMed  PubMed Central  Google Scholar 

  16. Fennessey CM, Keele BF (2013) Using nonhuman primates to model HIV transmission. Curr Opin HIV AIDS 8:280–287

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedrich BM, Dziuba N, Li G, Endsley MA, Murray JL, Ferguson MR (2011) Host factors mediating HIV-1 replication. Virus Res 161:101–114

    Article  CAS  PubMed  Google Scholar 

  18. Sauter D (2014) Counteraction of the multifunctional restriction factor tetherin. Front Microbiol 5:163

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pyndiah N, Telenti A, Rausell A (2015) Evolutionary genomics and HIV restriction factors. Curr Opin HIV AIDS 10:79–83

    Article  CAS  PubMed  Google Scholar 

  20. Li C, Guan X, Du T, Jin W, Wu B, Liu Y, Wang P, Hu B, Griffin GE, Shattock RJ, Hu Q (2015) Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 96:2381–2393

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S, Sun YE, Ji W (2014) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding Y, Li H, Chen LL, Xie K (2016) Recent advances in genome editing using CRISPR/Cas9. Front Plant Sci 7:703

    PubMed  PubMed Central  Google Scholar 

  23. He Z, Proudfoot C, Whitelaw CB, Lillico SG (2016) Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. Springerplus 5:814

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Huang H, Zhang B, Lin S (2016) TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish. Methods Cell Biol 135:107–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology of China (2013ZX10001-004-002-005) and the Natural Science Foundation of Hubei Provincial Department of Education (Q20162110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongsheng Li or Yi Zeng.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical standard statement and informed consent

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, Q., Yuan, Y. et al. Targeting the rhesus macaque TRIM5α gene to enhance the susceptibility of CD4+ T cells to HIV-1 infection. Arch Virol 162, 793–798 (2017). https://doi.org/10.1007/s00705-016-3169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3169-0

Keywords

Navigation