Skip to main content

Advertisement

Log in

Infection models of human norovirus: challenges and recent progress

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human norovirus (hNoV) infections cause acute gastroenteritis, accounting for millions of disease cases and more than 200,000 deaths annually. However, the lack of in vitro infection models and robust small-animal models has posed barriers to the development of virus-specific therapies and preventive vaccines. Promising recent progress in the development of a norovirus infection model is reviewed in this article, as well as attempts and efforts made since the discovery of hNoV more than 40 years ago. Because suitable experimental animal models for human norovirus are lacking, attractive alternatives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amano J, Oshima M (1999) Expression of the H type 1 blood group antigen during enterocytic differentiation of Caco-2 cells. J Biol Chem 274:21209–21216

    Article  CAS  PubMed  Google Scholar 

  2. Asanaka M, Atmar RL, Ruvolo V, Crawford SE, Neill FH, Estes MK (2005) Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc Natl Acad Sci USA 102:10327–10332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey D, Thackray LB, Goodfellow IG (2008) A single amino acid substitution in the murine norovirus capsid protein is sufficient for attenuation in vivo. J Virol 82:7725–7728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baric RS, Yount B, Lindesmith L, Harrington PR, Greene SR, Tseng FC, Davis N, Johnston RE, Klapper DG, Moe CL (2002) Expression and self-assembly of norwalk virus capsid protein from venezuelan equine encephalitis virus replicons. J Virol 76:3023–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basic M, Keubler LM, Buettner M, Achard M, Breves G, Schroder B, Smoczek A, Jorns A, Wedekind D, Zschemisch NH, Gunther C, Neumann D, Lienenklaus S, Weiss S, Hornef MW, Mahler M, Bleich A (2014) Norovirus triggered microbiota-driven mucosal inflammation in interleukin 10-deficient mice. Inflamm Bowel Dis 20:431–443

    Article  PubMed  Google Scholar 

  6. Bok K, Cavanaugh VJ, Matson DO, Gonzalez-Molleda L, Chang KO, Zintz C, Smith AW, Iversen P, Green KY, Campbell AE (2008) Inhibition of norovirus replication by morpholino oligomers targeting the 5’-end of the genome. Virology 380:328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bok K, Green KY (2012) Norovirus gastroenteritis in immunocompromised patients. N Engl J Med 367:2126–2132

    Article  CAS  PubMed  Google Scholar 

  8. Caddy SL, de Rougemont A, Emmott E, El-Attar L, Mitchell JA, Hollinshead M, Belliot G, Brownlie J, Le Pendu J, Goodfellow I (2015) Evidence for human norovirus infection of dogs in the UK. J Clin Microbiol 53:1873–1883

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carterson AJ, Honerzu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 73:1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chachu KA, LoBue AD, Strong DW, Baric RS, Virgin HW (2008) Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLoS Pathogens 4:e1000236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY (2004) Bile acids are essential for porcine enteric calicivirus replication in association with down-regulation of signal transducer and activator of transcription 1. Proc Natl Acad Sci USA 101:8733–8738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang KO, Sosnovtsev SV, Belliot G, King AD, Green KY (2006) Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353:463–473

    Article  CAS  PubMed  Google Scholar 

  13. Chang KO, George DW (2007) Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. J Virol 81:12111–12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Changotra H, Jia Y, Moore TN, Liu G, Kahan SM, Sosnovtsev SV, Karst SM (2009) Type I and type II interferons inhibit the translation of murine norovirus proteins. J Virol 83:5683–5692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ (2006) Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 80:10372–10381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM (2011) KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 10:577–590

    Article  CAS  PubMed  Google Scholar 

  17. Choi JM, Hutson AM, Estes MK, Prasad BV (2008) Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc Natl Acad Sci USA 105:9175–9180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cubitt WD, Barrett AD (1984) Propagation of human candidate calicivirus in cell culture. J Gen Virol 65(Pt 6):1123–1126

    Article  PubMed  Google Scholar 

  19. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK (2004) Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87

    Article  CAS  PubMed  Google Scholar 

  20. Farkas T, Sestak K, Wei C, Jiang X (2008) Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virolgy 82:5408–5416

    Article  CAS  Google Scholar 

  21. Finkbeiner SR, Zeng XL, Utama B, Atmar RL, Shroyer NF, Estes MK (2012) Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 3:e00159–e00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flynn WT, Saif LJ (1988) Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J Clin Microbiol 26:206–212

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH (2001) Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 280:C1540–C1554

    CAS  PubMed  Google Scholar 

  24. Gelmetti D, Grieco V, Rossi C, Capucci L, Lavazza A (1998) Detection of rabbit haemorrhagic disease virus (RHDV) by in situ hybridisation with a digoxigenin labelled RNA probe. J Virol Methods 72:219–226

    Article  CAS  PubMed  Google Scholar 

  25. Goke M, Kanai M, Podolsky DK (1998) Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol 274:G809–G818

    CAS  PubMed  Google Scholar 

  26. Green KY, Kapikian AZ, Valdesuso J, Sosnovtsev S, Treanor JJ, Lew JF (1997) Expression and self-assembly of recombinant capsid protein from the antigenically distinct Hawaii human calicivirus. J Clin Microbiol 35:1909–1914

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Guix S, Asanaka M, Katayama K, Crawford SE, Neill FH, Atmar RL, Estes MK (2007) Norwalk virus RNA is infectious in mammalian cells. J Virol 81:12238–12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halstead SB, Chow JS, Marchette NJ (1973) Immunological enhancement of dengue virus replication. Nat New Biol 243:24–26

    CAS  PubMed  Google Scholar 

  29. Halstead SB, O’Rourke EJ (1977) Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harrington PR, Lindesmith L, Yount B, Moe CL, Baric RS (2002) Binding of Norwalk virus-like particles to ABH histo-blood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice. J Virol 76:12335–12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN, Sarker SS, Atmar RL, Kingsley DH, Arntzen CJ, Estes MK, Nickerson CA (2013) Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg Infect Dis 19:431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Honerzu Bentrup K, Ramamurthy R, Ott CM, Emami K, Nelman-Gonzalez M, Wilson JW, Richter EG, Goodwin TJ, Alexander JS, Pierson DL, Pellis N, Buchanan KL, Nickerson CA (2006) Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect Institut Pasteur 8:1813–1825

    Article  CAS  Google Scholar 

  33. Hsu CC, Riley LK, Wills HM, Livingston RS (2006) Persistent infection with and serologic cross-reactivity of three novel murine noroviruses. Comp Med 56:247–251

    CAS  PubMed  Google Scholar 

  34. Hsu CC, Riley LK, Livingston RS (2007) Molecular characterization of three novel murine noroviruses. Virus Genes 34:147–155

    Article  CAS  PubMed  Google Scholar 

  35. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X (2005) Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol 79:6714–6722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang Z, Elkin G, Maloney BJ, Beuhner N, Arntzen CJ, Thanavala Y, Mason HS (2005) Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine 23:1851–1858

    Article  CAS  PubMed  Google Scholar 

  37. Hughes JH (1993) Physical and chemical methods for enhancing rapid detection of viruses and other agents. Clin Microbiol Rev 6:150–175

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hutson AM, Atmar RL, Graham DY, Estes MK (2002) Norwalk virus infection and disease is associated with ABO histo-blood group type. J Infect Dis 185:1335–1337

    Article  PubMed  Google Scholar 

  39. Hutson AM, Airaud F, LePendu J, Estes MK, Atmar RL (2005) Norwalk virus infection associates with secretor status genotyped from sera. J Med Virol 77:116–120

    Article  CAS  PubMed  Google Scholar 

  40. Imbert-Marcille BM, Barbe L, Dupe M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoen-Clouet N, Le Pendu J (2014) A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis 209:1227–1230

    Article  CAS  PubMed  Google Scholar 

  41. Jiang X, Wang M, Graham DY, Estes MK (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66:6527–6532

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson KM, Halstead SB, Cohen SN (1967) Hemorrhagic fevers of Southeast Asia and South America: a comparative appraisal. Prog Med Virol 9:105–158

    CAS  PubMed  Google Scholar 

  43. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-Hernandez MB, Iovine NM, Wobus CE, Vinje J, Tibbetts SA, Wallet SM, Karst SM (2014) Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joshi SS, Jackson JD, Sharp JG (1985) Differentiation inducing effects of butyrate and DMSO on human intestinal tumor cell lines in culture. Cancer Detect Prev 8:237–245

    CAS  PubMed  Google Scholar 

  45. Kamata K, Shinozaki K, Okada M, Seto Y, Kobayashi S, Sakae K, Oseto M, Natori K, Shirato-Horikoshi H, Katayama K, Tanaka T, Takeda N, Taniguchi K (2005) Expression and antigenicity of virus-like particles of norovirus and their application for detection of noroviruses in stool samples. J Med Virol 76:129–136

    Article  CAS  PubMed  Google Scholar 

  46. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV (2011) Successful transmission of a retrovirus depends on the commensal microbiota. Science 334:245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kapikian AZ, Wyatt RG, Dolin R, Thornhill TS, Kalica AR, Chanock RM (1972) Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol 10:1075–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kapikian AZ (2000) The discovery of the 27-nm Norwalk virus: an historic perspective. J Infect Dis 181(Suppl 2):S295–S302

    Article  PubMed  Google Scholar 

  49. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HWt (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578

    Article  CAS  PubMed  Google Scholar 

  50. Karst SM (2010) Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2:748–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW (2014) Advances in norovirus biology. Cell Host Microbe 15:668–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katayama K, Hansman GS, Oka T, Ogawa S, Takeda N (2006) Investigation of norovirus replication in a human cell line. Arch Virol 151:1291–1308

    Article  CAS  PubMed  Google Scholar 

  53. Katayama K, Murakami K, Sharp TM, Guix S, Oka T, Takai-Todaka R, Nakanishi A, Crawford SE, Atmar RL, Estes MK (2014) Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA. Proc Natl Acad Sci USA 111:E4043–E4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB (1995) Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 270:4640–4649

    Article  CAS  PubMed  Google Scholar 

  55. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334:249–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lamartina S, Roscilli G, Rinaudo D, Delmastro P, Toniatti C (1998) Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle. J Virol 72:7653–7658

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lambden PR, Caul EO, Ashley CR, Clarke IN (1993) Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 259:516–519

    Article  CAS  PubMed  Google Scholar 

  58. Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, Sastry KJ, Yao Q, Estes MK (2010) Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin Y, Fengling L, Lianzhu W, Yuxiu Z, Yanhua J (2014) Function of VP2 protein in the stability of the secondary structure of virus-like particles of genogroup II norovirus at different pH levels: function of VP2 protein in the stability of NoV VLPs. J Microbiol 52:970–975

    Article  PubMed  CAS  Google Scholar 

  60. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R (2003) Human susceptibility and resistance to Norwalk virus infection. Nat Med 9:548–553

    Article  CAS  PubMed  Google Scholar 

  61. LoBue AD, Thompson JM, Lindesmith L, Johnston RE, Baric RS (2009) Alphavirus-adjuvanted norovirus-like particle vaccines: heterologous, humoral, and mucosal immune responses protect against murine norovirus challenge. J Virol 83:3212–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Long JP, Hughes JH (2001) Epstein-Barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. Cell Dev Biol Anim 37:223–230

    CAS  Google Scholar 

  63. Maitreyi RS, Broor S, Kabra SK, Ghosh M, Seth P, Dar L, Prasad AK (2000) Rapid detection of respiratory viruses by centrifugation enhanced cultures from children with acute lower respiratory tract infections. J Clin Virol 16:41–47

    Article  CAS  PubMed  Google Scholar 

  64. Maloney NS, Thackray LB, Goel G, Hwang S, Duan E, Vachharajani P, Xavier R, Virgin HW (2012) Essential cell-autonomous role for interferon (IFN) regulatory factor 1 in IFN-gamma-mediated inhibition of norovirus replication in macrophages. J Virol 86:12655–12664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Manley K, Anderson J, Yang F, Szustakowski J, Oakeley EJ, Compton T, Feire AL (2011) Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 10:197–209

    Article  CAS  PubMed  Google Scholar 

  66. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-Palacois G, Huang P, Jiang X, Le Pendu J (2002) Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122:1967–1977

    Article  CAS  PubMed  Google Scholar 

  67. Marionneau S, Airaud F, Bovin NV, Le Pendu J, Ruvoen-Clouet N (2005) Influence of the combined ABO, FUT2, and FUT3 polymorphism on susceptibility to Norwalk virus attachment. J Infect Dis 192:1071–1077

    Article  CAS  PubMed  Google Scholar 

  68. Mason PW, Baxt B, Brown F, Harber J, Murdin A, Wimmer E (1993) Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192:568–577

    Article  CAS  PubMed  Google Scholar 

  69. McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M (2008) MDA-5 recognition of a murine norovirus. PLoS Pathogens 4:e1000108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Milek M, Wooley RE, Blue JL (1976) Replication of feline herpesvirus and feline calicivirus in cell and organ cultures. Am J Vet Res 37:723–724

    CAS  PubMed  Google Scholar 

  71. Mollicone R, Bara J, Le Pendu J, Oriol R (1985) Immunohistologic pattern of type 1 (Lea, Leb) and type 2 (X, Y, H) blood group-related antigens in the human pyloric and duodenal mucosae. Lab Investig J Tech Methods Pathol 53:219–227

    CAS  Google Scholar 

  72. Moussa A, Chasey D, Lavazza A, Capucci L, Smid B, Meyers G, Rossi C, Thiel HJ, Vlasak R, Ronsholt L et al (1992) Haemorrhagic disease of lagomorphs: evidence for a calicivirus. Vet Microbiol 33:375–381

    Article  CAS  PubMed  Google Scholar 

  73. Mumphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, Reilly MJ, Moghadamfalahi M, Shukla D, Karst SM (2007) Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J Virol 81:3251–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nickerson CA, Goodwin TJ, Terlonge J, Ott CM, Buchanan KL, Uicker WC, Emami K, LeBlanc CL, Ramamurthy R, Clarke MS, Vanderburg CR, Hammond T, Pierson DL (2001) Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 69:7106–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nickerson CA, Richter EG, Ott CM (2007) Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J Neuroimmune Pharmacol 2:26–31

    Article  PubMed  Google Scholar 

  76. Oriol R (1990) Genetic control of the fucosylation of ABH precursor chains. Evidence for new epistatic interactions in different cells and tissues. J Immunogenet 17:235–245

    Article  CAS  PubMed  Google Scholar 

  77. Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR (1977) Clinical immunity in acute gastroenteritis caused by Norwalk agent. N Engl J Med 297:86–89

    Article  CAS  PubMed  Google Scholar 

  78. Parwani AV, Flynn WT, Gadfield KL, Saif LJ (1991) Serial propagation of porcine enteric calicivirus in a continuous cell line. Effect of medium supplementation with intestinal contents or enzymes. Arch Virol 120:115–122

    Article  CAS  PubMed  Google Scholar 

  79. Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pinto RM, Diez JM, Bosch A (1994) Use of the colonic carcinoma cell line CaCo2 for in vivo amplification and detection of enteric viruses. J Med Virol 44:310–315

    Article  CAS  PubMed  Google Scholar 

  81. Prieto JM, Fernandez F, Alvarez V, Espi A, Garcia Marin JF, Alvarez M, Martin JM, Parra F (2000) Immunohistochemical localisation of rabbit haemorrhagic disease virus VP-60 antigen in early infection of young and adult rabbits. Res Vet Sci 68:181–187

    Article  CAS  PubMed  Google Scholar 

  82. Quaroni A, Tian JQ, Goke M, Podolsky DK (1999) Glucocorticoids have pleiotropic effects on small intestinal crypt cells. Am J Physiol 277:G1027–G1040

    CAS  PubMed  Google Scholar 

  83. Robinson CM, Jesudhasan PR, Pfeiffer JK (2014) Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 15:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Robinson L, Windsor M, McLaughlin K, Hope J, Jackson T, Charleston B (2011) Foot-and-mouth disease virus exhibits an altered tropism in the presence of specific immunoglobulins, enabling productive infection and killing of dendritic cells. J Virol 85:2212–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ruvoen-Clouet N, Mas E, Marionneau S, Guillon P, Lombardo D, Le Pendu J (2006) Bile-salt-stimulated lipase and mucins from milk of ‘secretor’ mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. Biochem J 393:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schaffer FL, Soergel ME, Black JW, Skilling DE, Smith AW, Cubitt WD (1985) Characterization of a new calicivirus isolated from feces of a dog. Arch Virol 84:181–195

    Article  CAS  PubMed  Google Scholar 

  87. Schwab KJ, Estes MK, Neill FH, Atmar RL (1997) Use of heat release and an internal RNA standard control in reverse transcription-PCR detection of Norwalk virus from stool samples. J Clin Microbiol 35:511–514

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwab KJE, Atmar RL (2000) Norwalk and other human caliciviruses: molecular characterization, epidemiology, and pathogenesis. In: JW Cary JELDB (ed) Microbial foodborne diseases. Technomic Publishing, Lancaster, pp 460–493

  89. Scipioni A, Mauroy A, Vinje J, Thiry E (2008) Animal noroviruses. Vet J 178:32–45

    Article  CAS  PubMed  Google Scholar 

  90. Seno M, Takao S, Fukuda S, Kanamoto Y (1991) Enhanced isolation of influenza virus in conventional plate cell cultures by using low-speed centrifugation from clinical specimens. Am J Clin Pathol 95:765–768

    Article  CAS  PubMed  Google Scholar 

  91. Shen Q, Zhang W, Yang S, Yang Z, Chen Y, Cui L, Zhu J, Hua X (2012) Recombinant porcine norovirus identified from piglet with diarrhea. BMC Vet Res 8:155

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shirato H, Ogawa S, Ito H, Sato T, Kameyama A, Narimatsu H, Xiaofan Z, Miyamura T, Wakita T, Ishii K, Takeda N (2008) Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J Virol 82:10756–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Straub TM, Honerzu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA (2007) In vitro cell culture infectivity assay for human noroviruses. Emerg Infect Dis 13:396–403

    Article  PubMed  PubMed Central  Google Scholar 

  94. Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, Ozanich RM, Bruckner-Lea CJ, Call DR (2011) Human norovirus infection of CaCo2 cells grown as a three-dimensional tissue structure. J Water Health 9:225–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Summa M, von Bonsdorff CH, Maunula L (2012) Pet dogs—a transmission route for human noroviruses? J Clin Virol 53:244–247

    Article  PubMed  Google Scholar 

  96. Svensson L, Finlay BB, Bass D, von Bonsdorff CH, Greenberg HB (1991) Symmetric infection of rotavirus on polarized human intestinal epithelial (CaCo2) cells. J Virol 65:4190–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tacket CO, Mason HS, Losonsky G, Estes MK, Levine MM, Arntzen CJ (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 182:302–305

    Article  CAS  PubMed  Google Scholar 

  98. Takanashi S, Hashira S, Matsunaga T, Yoshida A, Shiota T, Tung PG, Khamrin P, Okitsu S, Mizuguchi M, Igarashi T, Ushijima H (2009) Detection, genetic characterization, and quantification of norovirus RNA from sera of children with gastroenteritis. J Clin Virol 44:161–163

    Article  CAS  PubMed  Google Scholar 

  99. Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K, Scheuer KA, Wang Q (2014) Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol 159:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan M, Jiang X (2010) Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathogens 6:e1000983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Tan M, Wei C, Huang P, Fan Q, Quigley C, Xia M, Fang H, Zhang X, Zhong W, Klassen JS, Jiang X (2015) Tulane virus recognizes sialic acids as cellular receptors. Sci Rep 5:11784

    Article  PubMed  PubMed Central  Google Scholar 

  102. Taube S, Kurth A, Schreier E (2005) Generation of recombinant norovirus-like particles (VLP) in the human endothelial kidney cell line 293T. Arch Virol 150:1425–1431

    Article  CAS  PubMed  Google Scholar 

  103. Taube S, Kolawole AO, Hohne M, Wilkinson JE, Handley SA, Perry JW, Thackray LB, Akkina R, Wobus CE (2013) A mouse model for human norovirus. mBio 4:e00450–e00513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Thackray LB, Wobus CE, Chachu KA, Liu B, Alegre ER, Henderson KS, Kelley ST, Virgin HWt (2007) Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vashist S, Bailey D, Putics A, Goodfellow I (2009) Model systems for the study of human norovirus Biology. Future Virol 4:353–367

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vongpunsawad S, Venkataram Prasad BV, Estes MK (2013) Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. J Virol 87:4818–4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ward JM, Wobus CE, Thackray LB, Erexson CR, Faucette LJ, Belliot G, Barron EL, Sosnovtsev SV, Green KY (2006) Pathology of immunodeficient mice with naturally occurring murine norovirus infection. Toxicol Pathol 34:708–715

    Article  PubMed  Google Scholar 

  108. White LJ, Ball JM, Hardy ME, Tanaka TN, Kitamoto N, Estes MK (1996) Attachment and entry of recombinant Norwalk virus capsids to cultured human and animal cell lines. J Virol 70:6589–6597

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wobus CE, Karst SM, Thackray LB, Chang KO, Sosnovtsev SV, Belliot G, Krug A, Mackenzie JM, Green KY, Virgin HW (2004) Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Wobus CE, Thackray LB, Virgin HWt (2006) Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xi JN, Graham DY, Wang KN, Estes MK (1990) Norwalk virus genome cloning and characterization. Science 250:1580–1583

    Article  CAS  PubMed  Google Scholar 

  112. Zhang D, Huang P, Zou L, Lowary TL, Tan M, Jiang X (2015) Tulane virus recognizes the A type 3 and B histo-blood group antigens. J Virol 89:1419–1427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zhu S, Regev D, Watanabe M, Hickman D, Moussatche N, Jesus DM, Kahan SM, Napthine S, Brierley I, Hunter RN 3rd, Devabhaktuni D, Jones MK, Karst SM (2013) Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathogens 9:e1003592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by a research grant from Korea Food and Drug Administration (14162-973).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjong Myoung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, S., Choi, IS., Choi, C. et al. Infection models of human norovirus: challenges and recent progress. Arch Virol 161, 779–788 (2016). https://doi.org/10.1007/s00705-016-2748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2748-4

Keywords

Navigation